期刊文献+

基于BP神经网络的核事故多核素源项反演方法 被引量:7

Multi-nuclide Source Term Inversion Based on BP Neural Network During Nuclear Accident
下载PDF
导出
摘要 核事故发生后,为快速评估事故严重程度,需要对源项释放率进行估算。本文选取I-131,Cs-137,Xe-133和Kr-85四种核素的释放率为目标信号,利用Matlab建立基于BP神经网络的核事故四核素源项反演模型。计算结果表明,在单隐层节点数为5~60范围内,训练均方差随节点数增加先减小后增大,在节点数为25时达到最小值41.1%。学习速率在0.01~0.2范围内时,增大学习率可减小训练均方差与各核素相对误差。对单隐层节点数为25,学习速率为0.2的训练结果进行测试,4种核素的源项估计相对误差分别为56.7%,49.1%,92.4%和92.0%。 To estimate the severity of nuclear accident,a back propagation(BP)neural network basic model is built for source term inversion during a nuclear accident.The release rates of I-131,Cs-137,Xe-133 and Kr-85 are selected as target signals,and the Matlab software is used to perform the calculations for source term inversion.The results show that in a single hidden layer,the train mean square error decreases firstly but increases thereafter with increasing the number of nodes from 5to 60,and reaches the minimum value of 41.1% when the number of nodes is 25.Increasing the learning rate from0.01 to 0.2can reduce the relative error variance for each nuclide.The relative errors of release rates of I-131,Cs-137,Xe-133 and Kr-85 are 6.7%,49.7%,92.3% and 92.0%,respectively,when the learning rate is 0.2.The source term inversion is tested at the node number of 25 and the learning rate of0.2,and the results show that the relative test errors of release rates of I-131,Cs-137,Xe-133 and Kr-85 are 56.7%,49.1%,92.4% and 92.0%,respectively.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2016年第1期130-135,共6页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国防基础科研基金资助项目 江苏高校优势学科建设工程资助项目
关键词 核事故 源项反演 BP神经网络 多核素 非线性 事故后果评价 nuclear accident source term inversion BP neural network multi-nuclide nonlinear accident consequence assessment
  • 相关文献

参考文献13

二级参考文献24

  • 1刘立平,牛熠.遗传算法综述[J].东莞理工学院学报,2005,12(3):48-52. 被引量:25
  • 2朱江,汪萍.集合卡尔曼平滑和集合卡尔曼滤波在污染源反演中的应用[J].大气科学,2006,30(5):871-882. 被引量:35
  • 3徐志新,奚树人,曲静原.核事故源项反演技术及其研究现状[J].科技导报,2007,25(5):16-20. 被引量:9
  • 4EVENSEN G. Inverse methods and data assimu- lation in nolinear ocean models[J]. Physica D: Nolinear Phenomena, 2006, 40: 7 267-7 279. 被引量:1
  • 5马元巍,张括,王德忠.核事故源项反演方法数值研究[C]//21世纪辐射防护论坛第九次会议一日本福岛核事故专题研讨会论文集.扬州:[出版者不详],2011:417-425. 被引量:1
  • 6福岛核电站到底发生了什么[EB/OL].(2011-03-14).http://news.ifeng.com/mil/special/fudaohedianzhan-Daozna/. 被引量:1
  • 7Jeong H J , Kim E H, Kyung-Suk, et al. Determination of the source term released into the environment from a nuclear power plant [ J]. Radiation Protection Dosimetry, 2005, 113 (3) : 308 - 313. 被引量:1
  • 8Kalman R E. A new approach to linear filtering and prediction problems [J]. Journal of Basic Engineering, 1960, 82(Series D) : 35 -45. 被引量:1
  • 9Drew M. Data assimilation on atmospheric dispersion of radioactive materials [D]. Denmark: Technical University of Denmark, 2004. 被引量:1
  • 10Zurada J M. Introduction to artificial neutral systems [M]. New York: West Publishing Company, 1992: 37 -72. 被引量:1

共引文献23

同被引文献52

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部