摘要
运用Sturm-Liouville特征值定性理论,对六阶微分方程组广义低阶特征值进行估计,获得用主特征值来估计次特征值上界的显式不等式,其估计上界与所论区间的长度有关,而与区间在数轴上的具体位置无关.
With the help of classical Sturm-Liouville's eigenvalue qualitative theory, estimate of generalized lower-order eigenvalue for sixth-order differential equations is considered. The explicit inequality of the upper bound of second eigenvalue is estimated from the first one. The estimated upper bound is relevant to the length of the interval, but not to its location on the axis of coordinates.
出处
《湖北文理学院学报》
2016年第2期5-8,14,共5页
Journal of Hubei University of Arts and Science