期刊文献+

一种解Dantzig-Selector模型的快速分解算法 被引量:1

A Fast Decomposition Algorithm for Finding Dantzig-Selectors
下载PDF
导出
摘要 基于增广拉格朗日法提出了一种快速分解算法求解Dantzig-Selector模型.与经典的乘子交替方向法相比,新算法的每个子问题都具有更简单易行的迭代格式.通过测试两种不同类型的随机数据,相应的数值计算结果表明,算法在CPU运行时间方面有较明显的优势. Based on the augmented Lagrangian method, this paper introduces a fast decomposition algorithm for solving the Dantzig selector model. Comparing with the classical alternating direction method of multipliers, all subproblems of the proposed algorithm have closed-form solutions so that the new algorithm is easily implementable in practice. Finally some preliminary numerical results show that our new algorithm has superiority in terms of taking less CPU time by testing two types of synthetic data sets.
出处 《杭州电子科技大学学报(自然科学版)》 2016年第1期97-102,共6页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 浙江省自然科学基金重点资助项目(LZ14A010003) 浙江省大学生新苗人才计划资助项目(2015R407038)
关键词 Dantzig-Selector模型 增广拉格朗日方法 乘子交替方向法 分解算法 Dantzig-Selector model augmented Lagrangian method alternating direction method of multipliers decomposition method
  • 相关文献

参考文献8

  • 1DONOHO D L. Compressed sensing[J]. Information Theory, IEEE Transactions on, 2006,52 (4) : 1289-1306. 被引量:1
  • 2CHEN S S, DONOHO D L, SAUNDERS M A. Automatic decomposition by basis pursuit[J]. SIAM Journal on Scientific Computing, 1998,20(1) : 33-61. 被引量:1
  • 3TIBSHIRANI R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society B, 1996,58(1) : 267-288. 被引量:1
  • 4CANDES E, TAO T. The Dantzig selector: statistical estimation when p is much larger than n[J]. Annals of Statistics, 2007,35 (6) : 2313-2351. 被引量:1
  • 5LU Z S, PONG T K, ZHANG Y. An alternating direction method for finding Dantzig selectors[J]. Computational Statistics Data Analysis, 2012,56 (12) : 4037-4046. 被引量:1
  • 6GABAY D, MERCIER B. A dual algorithm for the solution of nonlinear variational problems via finite element approximation[J]. Computers Mathematics with Applications, 1976,2(1) : 16-40. 被引量:1
  • 7WANG X, YUAN X. The linearized alternating direction method of multipliers for Dantzig selector[J]. SIAM Journal on Scientific Computing,2012,34(5):A2792-A2811. 被引量:1
  • 8袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社,1996;186-194. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部