期刊文献+

Numerical Analysis of a Gravity Substructure for 5 MW Offshore Wind Turbines Due to Soil Conditions

Numerical Analysis of a Gravity Substructure for 5 MW Offshore Wind Turbines Due to Soil Conditions
下载PDF
导出
摘要 In order to increase the gross generation of wind turbines, the size of a tower and a rotor-nacelle becomes larger. In other words, the substructure for offshore wind turbines is strongly influenced by the effect of wave forces as the size of substructure increases. In addition, since a large offshore wind turbine has a heavy dead load, the reaction forces on the substructure become severe, thus very firm foundations should be required. Therefore, the dynamic soil-structure interaction has to be fully considered and the wave forces acting on substructure accurately calculated. In the present study, ANSYS AQWA is used to evaluate the wave forces. Moreover, the substructure method is applied to evaluate the effect of soil-structure interaction. Using the wave forces and the stiffness and damping matrices obtained from this study, the structural analysis of the gravity substructure is carried out through ANSYS mechanical. The structural behaviors of the strength and deformation are evaluated to investigate an ultimate structural safety and serviceability of gravity substructure for various soil conditions. Also, the modal analysis is carried out to investigate the resonance between the wind turbine and the gravity substructure.
出处 《Journal of Energy and Power Engineering》 2016年第3期150-158,共9页 能源与动力工程(美国大卫英文)
关键词 Offshore wind energy gravity substructure suction bucket foundation substructure method structural analysis. 风力发电机组 子结构 重力 数值分析 土-结构相互作用 风力涡轮机 ANSYS 近海
  • 相关文献

参考文献11

  • 1Jan, W., Marte, R., Christian, S., and Edgar, G. H. 2009. "Life Cycle Assessment of a Floating Offshore Wind Turbine." Renew Energy 34 (3): 742-7. 被引量:1
  • 2Jonkman, J. M. 2009. "Dynamics of Offshore Floating Wind Turbines-Model Development and Verification." Wind Energy 12 (5): 459-92. 被引量:1
  • 3Lozano-Minguez, E., Kolios, A. J., and Brennan, F. P. 2011. "Multi-criteria Assessment of Offshore Wind Turbine Support Structures." Renew Energy 36 (11): 2381-7. 被引量:1
  • 4Wolf, J. P. 1985. Dynamic Soil Structure Interaction. New Jersey: Prentice Hall, Inc. 被引量:1
  • 5Wolf, J. P. 1988. Soil Structure Interaction Analysis in Time Domain. New Jersey: Prentice Hall, Inc. 被引量:1
  • 6Fischer, T., De Vries, W., and Schmidt, B. 2010. Upwind Design Basis (WP4: Offshore Foundations and Support Structures). Stuttgart: Institute of Aircraft Design Universit/lt Stuttgart. 被引量:1
  • 7Yamada, Y., Kawano, K., Iemura, H., and Venkataramana, K. 1988. "Wave and Earthquake Response of Offshore Structure with Soil-Structure Interaction." Proceeding Structure Eng./Earthquake Eng. 5 (2): 361-70. 被引量:1
  • 8Park, M. S., Koo, W. C., and Kawano, K. 2011. "Dynamic Response Analysis of an Offshore Platform Due to Seismic Motions." Engineering Structures 33 (5): 1607-16. 被引量:1
  • 9Jonkman, J., Butterfield, S., Musial, W., and Scott, G. 2009. "Definition of a 5 MW Reference Wind Turbine for Offshore System Development." National Renewable Energy Laboratory. 被引量:1
  • 10Bernard, R. W., Jason, T. D., and Thomas, S. 2012. Guidelines for Estimation of Shear Wave Velocity Profile. PEER (Pacific Earthquake Engineering Research) report 2012/08. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部