期刊文献+

有再保险控制下的非线性脉冲注资问题 被引量:3

Nonlinear impulse capital injections problem with reinsurance control
原文传递
导出
摘要 假定有两家再保险公司共同接受原始保险公司的分保,且保险公司及这两家再保险公司均采用方差保费准则收取保费.基于上述跳风险模型,本文采用扩散逼近模型为基本模型来描述保险公司再保后的资产盈余.另外,为避免破产的发生,公司会接受外部资金注入.假定每次注资不低于某个固定常数d>0,且有固定交易费和比例费用,即为有限制情形下的脉冲注资.本文研究最小期望折现非线性脉冲注资问题,应用Hamilton-Jacobi-Bellman(HJB)方法,给出值函数和最优策略的明晰解答.最后,对有关参数进行灵敏度分析. Assume that two reinsurers participate in a reinsurance treaty, and both the insurer and two reinsur- ers adopt the variance premium principle. Based on the above jump risk model, we use the diffusion approximation risk process to model the assets of insurance company with reinsurance. To avoid bankruptcy, the insurance com- pany will receive capital injections, we assume that each capital injection is not less than a certain constant d 〉 0, and it also will incur some fixed transaction costs and proportional taxes, i.e., impulse injections with constraint. For the diffusion model, we study the minimum of the expected discounted nonlinear capital injection, using Hamiltou-Jacobi-Bellman (HJB) method, and we give explicit solutions for the value function and the optimal control strategy. Finally, for the influence of parameters on the optimal results, we also give numerical analysis.
出处 《中国科学:数学》 CSCD 北大核心 2016年第2期235-246,共12页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11271385,71301173和11571388) 教育部人文社会科学重点研究基地(批准号:14JJD790001) 中央高校基本科研业务费专项资金 中央财经大学科研创新团队支持计划资助项目
关键词 方差保费准则 再保险策略 脉冲注资 非线性费用函数 HAMILTON-JACOBI-BELLMAN方程 variance premium principle, reinsurance stragegy, impulse capital injection, nonlinear cost function, Hamilton-Jacobi-Bellman equation
  • 相关文献

参考文献23

  • 1Young V R. Premium principles. In: Encyclopedia of Actuarial Science, vol. 3. West Sussex: John Wiley ~ Sons, 2004, 1323 1331. 被引量:1
  • 2Chi Y C, Meng H. Optimal reinsurance arrangements in the presence of two reinsures. Scand Actuar J, 2014, 5: 424-438. 被引量:1
  • 3Meng H. Optimal impulse control with variance premium principle (in Chinese). Sci Sin Math, 2013, 43:925-939. 被引量:1
  • 4Cadenillas A, Sarkar S, Zapatero F. Optimal dividen policy with mean-reverting cash reservoir. Math Finance, 2007, 17:81-109. 被引量:1
  • 5Guo X, Wu G L. Smooth fit principle for impulse control of multidimensional diffusion processes. SIAM J Control Optim, 2009, 48:594 617. 被引量:1
  • 6Schmidli H. On minimizing the ruin probability by investments and reinsurance. Ann Appl Probab, 2002, 12:890-907. 被引量:1
  • 7Asmussen S, Albrecher H. Ruin Probabilities. 2nd ed. Hackensack: World Scientific Publishing, 2010. 被引量:1
  • 8Asmussen S, Hcjgaard B, Taksar M. Optimal risk control and dividend distribution policies: Example of excess of loss reinsurance for an insurance corporation. Finance Stoch, 2000, 4:299-324. 被引量:1
  • 9Paulsen J. Optimal dividend payments until ruin of diffusion processes when payments are subject to both fixed and proportional costs. Adv Appl Probab, 2007, 39:669-689. 被引量:1
  • 10Cadenillas A, Choulli T, Taksar M, et al. Classical and impulse stochastic control for the optimization of the dividend and risk policies of an insurance firm. Math Finance, 2006, 16:181-202. 被引量:1

同被引文献10

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部