摘要
Built-in-test (BIT) is responsible for equipment fault detection, so the test data correct- ness directly influences diagnosis results. Equipment suffers all kinds of environment stresses, such as temperature, vibration, and electromagnetic stress. As embedded testing facility, BIT also suffers from these stresses and the interferences/faults are caused, so that the test course is influenced, resulting in incredible results. Therefore it is necessary to monitor test data and judge test failures. Stress monitor and BIT self-diagnosis would redound to BIT reliability, but the existing anti- jamming researches are mainly safeguard design and signal process. This paper focuses on test results monitor and BIT equipment (BITE) failure judge, and a series of improved approaches is proposed. Firstly the stress influences on components are illustrated and the effects on the diagnosis results are summarized. Secondly a composite BIT program is proposed with information integra- tion, and a stress monitor program is given. Thirdly, based on the detailed analysis of system faults and forms of BIT results, the test sequence control method is proposed. It assists BITE failure judge and reduces error probability. Finally the validation cases prove that these approaches enhance credibility.
Built-in-test (BIT) is responsible for equipment fault detection, so the test data correct- ness directly influences diagnosis results. Equipment suffers all kinds of environment stresses, such as temperature, vibration, and electromagnetic stress. As embedded testing facility, BIT also suffers from these stresses and the interferences/faults are caused, so that the test course is influenced, resulting in incredible results. Therefore it is necessary to monitor test data and judge test failures. Stress monitor and BIT self-diagnosis would redound to BIT reliability, but the existing anti- jamming researches are mainly safeguard design and signal process. This paper focuses on test results monitor and BIT equipment (BITE) failure judge, and a series of improved approaches is proposed. Firstly the stress influences on components are illustrated and the effects on the diagnosis results are summarized. Secondly a composite BIT program is proposed with information integra- tion, and a stress monitor program is given. Thirdly, based on the detailed analysis of system faults and forms of BIT results, the test sequence control method is proposed. It assists BITE failure judge and reduces error probability. Finally the validation cases prove that these approaches enhance credibility.
基金
supported by the Ministry Level Project of China