期刊文献+

页岩气纳米孔真实气体传输模型 被引量:7

Real gas transport through nanopores of shale gas reservoirs
原文传递
导出
摘要 页岩富含纳米孔,纳米孔气体传输不同于宏观流体流动.基于滑脱流动和克努森扩散两种传输机理,分别以分子之间碰撞频率和分子与壁面碰撞频率占总碰撞频率的比值作为滑脱流动和克努森扩散的权重系数,耦合这两种机理,建立了理想气体传输模型.同时考虑高压条件下真实气体分子间相互作用力和气体分子自身体积对气体传输的影响,建立了页岩纳米孔真实气体传输模型.模型可靠性通过分子模拟结果验证.结果表明:纳米孔真实气体传输模型能够更合理地描述所有的气体传输机理,包括连续流动、滑脱流动和过渡流动;真实气体效应对气体传输的影响可高达23%,其受压力、温度、纳米孔尺度和气体类型的控制;在室内实验条件下模拟页岩纳米孔气体传输时,用氦气代替甲烷,低估了甲烷的传输能力65.09%;用氮气代替甲烷,高估了甲烷的传输能力106.27%. The gas transport in nanopores of shale gas reservoirs significantly differs from that in conventional gas reservoirs. A model for ideal gas in nanopores is derived based on a weighted summation of slip flow and Knudsen diffusion, where ratios of molecule-molecule collisions and molecule-wall collisions to total collisions are the weighted factors of slip flow and Knudsen diffusion, respectively. This model is extended to the application of real gas transport in nanopores, taking into account the effects of molecule-molecule force and gas molecule volume on mass transport under the condition of high pressure. The model reliability is validated by published molecular simulation results. The results show that the model can be more reasonable to describe all of the gas transport mechanism known, including continuous flow, slip flow and transition flow; the real gas effect on gas transport is up to 23%, which is affected by pressure, temperature, nanopores radius and gas type; and transport capacity is underestimated by 65.09% with helium and overestimated by 106.27% with nitrogen in modeling methane transport in shale nanopores under the condition of laboratory experiments.
出处 《中国科学:技术科学》 EI CSCD 北大核心 2016年第1期68-78,共11页 Scientia Sinica(Technologica)
基金 国家自然科学基金重大项目(批准号:51490654) 国家自然科学基金(批准号:51374222) 国家科技重大专项(编号:2011ZX05030-005-04)资助
关键词 页岩气 纳米孔 真实气体 滑脱流动 克努森扩散 shale gas reservoirs nanopores real gas slip flow Knudsen diffusion
  • 相关文献

参考文献29

  • 1Gao X C, Diniz da Costa J C, Bhatia S K. Adsorption and transport of gases in a supported microporous silica membrane. J Membr Sci, 2014, 460:46-61. 被引量:1
  • 2Michel G G, Sigal R F, Civan F, et al. Parametric investigation of shale gas production considering hunt-scale pore size distribution, formation factor, and non-Darcy flow mechanisms. In: SPE Annual Technical Conference and Exhibition, 30 October-2 November, Denver, Colorado, USA, 2011. SPE 147438-MS. 被引量:1
  • 3Ma J S, Sanchez J P, Wu K J, et al. A pore network model for simulating non-ideal gas flow in micro- and hunt-porous materials. Fuel, 2014, 116:498-508. 被引量:1
  • 4Loucks R G, Reed R M, Ruppel S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale. J Sediment Res, 2009, 79:848-861. 被引量:1
  • 5Curtis M E, Sondergeld C H, Ambrose R J. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging. AAPG Bull, 2012, 96:665-677. 被引量:1
  • 6Xiong X Y, Devegowda D, Michel G G, et al. A fully-coupled free and adsorptive phase transport model for shale gas reservoirs including non-darcy flow effects. In: SPE Annual Technical Conference and Exhibition, 8-10 October, San Antonio, Texas, USA, 2012. SPE 159758-MS. 被引量:1
  • 7Tinni A, Fathi E, Agarwal R, et al. Shale permeability measurements on plugs and crushed samples. In: SPE Canadian Unconventional Resources Conference, 30 October-1 November, Calgary, Alberta, Canada, 2012. SPE 162235-MS. 被引量:1
  • 8Civan F, Devegowda D, Sigal R. Critical evaluation and improvement of methods for determination of matrix permeability of shale. In: SPE Annual Technical Conference and Exhibition, 30 September-2 October, New Orleans, Louisiana, USA, 2013. SPE 166473-MS. 被引量:1
  • 9Wu K L, Li X F, Wang C C, et al. Apparent permeability for gas flow in shale reservoirs coupling effects of gas diffusion and desorpfion. In Unconventional Resources Technology Conference (URTEC) held in Denver, Colorado, USA, 25-27 August 2014. doi: 10.15530/urtec-2014-1921039. 被引量:1
  • 10Klinkenberg L J. The permeability of porous media to liquids and gases. Drilling and Production Practice, 1 January, New York, 1941. 200-213. 被引量:1

同被引文献164

引证文献7

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部