期刊文献+

井筒环雾流传热模型及其在深水气井水合物生成风险分析中的应用 被引量:8

Heat transfer model for annular-mist flow and its application in hydrate formation risk analysis during deepwater gas well testing
原文传递
导出
摘要 该文采用Hewitt流型判别法,表明深水含水气井测试时井筒内多为环雾流,考虑了气核与液膜间速度及热力学性质差异,建立了环雾流传热模型,与南海某深水气井实测数据对比,模型预测误差在5%以内。计算表明,忽略含水影响的气体单相模型在含水量大于0.1%时,泥线以上井筒压力和温度预测误差均超过10%,应用该研究建立的环雾流模型则可以得到更准确的结果。含水会使泥线以上一定范围内井段井筒温度显著降低,压力损失增大。产气量较低时,含水量对水合物生成风险基本无影响;产气量较高时,含水量会使得水合物生成区域下界下移,水合物生成区域增大,并使过冷度增大,更容易诱导水合物生成,水合物生成风险增大,需要增加水合物抑制剂用量,并加深注入位置。产水会使无水合物生成所对应的临界产气量增大,需要调整水合物抑制剂用量和注入位置。 Annular-mist flow in the tubing during deepwater water-content gas-well testing is confirmed with Hewitt's flow pattern prediction method. Considering the difference of velocity and thermodynamic properties between gas core and liquid film, an annular-mist heat transfer model is established in order to predict the wellbore temperature distribution. The model is verified with deepwater gas well testing data from South China Sea. The prediction error of the proposed model is less than 5%. The water content has a significant influence on wellbore pressure and temperature distribution, which can not be ignored. The wellbore pressure and temperature above mud line become lower when water is produced. The influence of water content on hydrate formation region is negligible while gas production is low. But when the gas production is high, the hydrate formation region and the subcooling become larger, making hydrates easier to form. To ensure the testing operation, the required amount of hydrate inhibitor must be increased and the injection point should be lowered. The critical gas production with no hydrates form in the wellbore increases when water is produced. Thus the amount of hydrate inhibitor used and the injection point should be adjusted accordingly.
出处 《水动力学研究与进展(A辑)》 CSCD 北大核心 2016年第1期20-27,共8页 Chinese Journal of Hydrodynamics
基金 国家高技术研究发展计划(863计划 2013AA09A215) 国家重点基础研究发展计划(973计划 2015CB251200)资助~~
关键词 环雾流 深水气井测试 井筒温度压力场 天然气水合物 annular-mist flow deepwater gas-well testing wellbore temperature and pressure distribution gas hydrates
  • 相关文献

参考文献2

二级参考文献30

  • 1YANG DingHui1 & XU WenYue2 1 Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China,2 School of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.Effects of salinity on methane gas hydrate system[J].Science China Earth Sciences,2007,50(11):1733-1745. 被引量:5
  • 2郝永卯,薄启炜,陈月明,李淑霞.天然气水合物降压开采实验研究[J].石油勘探与开发,2006,33(2):217-220. 被引量:24
  • 3Barker J W, Gomez R K. Formation of hydrates during deepwater drilling operations[A]. SPE 16130. 1989. 被引量:1
  • 4Knott T. Holding hydrates at Bay[J]. Offshore Engineer, 2001, 45(2) :29-34. 被引量:1
  • 5Ebeltoft H, YousifM, SoergaardE. Hydrate control during deep water drilling: Overview and new drilling fluids[A]. SPE 38567, 1997. 被引量:1
  • 6Botrel T, Isambourg P, Elf T F. Off setting kill and choke lines friction losses, a new method for deep water well control[A]. SPE 67813, 2001. 被引量:1
  • 7Englezos P, Bishoi P R. Prediction of gas hydrate formation conditions in aqueouseletrolyte solution[J]. AICHE J, 1988, 34 (3) : 1718-1721. 被引量:1
  • 8ZUO Y X, GUO T M. Extension of the Patel Teja Equation of state to the prediction of the solubility of natural gas in formation water[J]. Chem Eng Sci, 1991, 46(5).-3251 3258. 被引量:1
  • 9Rornero J, Touboul E. Temperature prediction for deepwater wells: A field validated methodology[A]. SPE49056, 1998. 被引量:1
  • 10YU M, CHEN G, Chenevert M E, et al. Chemical and thermal effects on wellbore stability of shale formations[A]. SPE 71366, 2001. 被引量:1

共引文献67

同被引文献85

引证文献8

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部