期刊文献+

Field-programmable gate array-based large-capacity sensing network with 1642 ultra-weak fiber Bragg gratings

Field-programmable gate array-based large-capacity sensing network with 1642 ultra-weak fiber Bragg gratings
原文传递
导出
摘要 A field-programmable gate array (FPGA)-based large-capacity sensing network with ultra-weak fiber Bragg gratings (FBGs) is proposed and experimentally studied. The demodulation system is constructed to interrogate 1642 serial time-division-multiplexing FBGs with a peak refleetivity of about -40 dB and equal separations of 2.5 m. Two semiconductor optical amplifiers and an InGaAs linear sensor array controlled by an FPGA are introduced to the demodulation system to achieve fast, precise, and flexible interrogation. The low crosstalk and spectral distortion axe investigated through both theoretical analysis and experiments. A field-programmable gate array (FPGA)-based large-capacity sensing network with ultra-weak fiber Bragg gratings (FBGs) is proposed and experimentally studied. The demodulation system is constructed to interrogate 1642 serial time-division-multiplexing FBGs with a peak refleetivity of about -40 dB and equal separations of 2.5 m. Two semiconductor optical amplifiers and an InGaAs linear sensor array controlled by an FPGA are introduced to the demodulation system to achieve fast, precise, and flexible interrogation. The low crosstalk and spectral distortion axe investigated through both theoretical analysis and experiments.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2016年第1期45-48,共4页 中国光学快报(英文版)
关键词 Bragg gratings DEMODULATION Fiber Bragg gratings Light amplifiers Logic gates Optical variables measurement Reconfigurable hardware Semiconductor optical amplifiers Time division multiplexing Bragg gratings Demodulation Fiber Bragg gratings Light amplifiers Logic gates Optical variables measurement Reconfigurable hardware Semiconductor optical amplifiers Time division multiplexing
  • 相关文献

参考文献14

  • 1Y. J. Rao, A. B. Lobo Ribeiro, D. A. Jackson, L. Zhang, and I. Bennion, Opt. Commun. 125, 53 (2012). 被引量:1
  • 2W. Ecke, I. Latka, R. Willsch, A. Reutlinger, and R. Graue, Meas. Sci. Technol. 12, 974 (2001). 被引量:1
  • 3B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, and D. C. Jegley, Proc. SPIE 4332, 133 (2001). 被引量:1
  • 4F. Zhu, D. Zhang, P. Fan, L. Li, and Y. Guo, Chin. Opt. Lett. 11, 100603 (2013). 被引量:1
  • 5J. Xie, F. Wang, Y. Pan, Z. Hu, and Y. Hu, Chin. Opt. Lett. 13, 010401 (2015). 被引量:1
  • 6D. J. F. Cooper, T. Coroy, and P. W. E. Smith, Appl. Opt. 40, 2643 (2001). 被引量:1
  • 7C. C. Chan, W. Jin, D. J. Wang, and M. S. Demokan, Microwave Opt. Technol. Lett. 36, 2 (2003). 被引量:1
  • 8M. L. Zhang, Q. Z. Sun, and Z. Wang, Opt. Commun. 285, 3082 (2012). 被引量:1
  • 9W. H. Chung and H. Y. Tam, IEEE Photon. Teehnol. Lett. 17, 2709 (2005). 被引量:1
  • 10G. D. Lloyd, L. A. Everall, K. Sugden, and I. Bennion, IEEE Photon. Technol. Lett. 16, 2323 (2004). 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部