期刊文献+

可平面图的线性2-荫度的新上限(英文) 被引量:1

Improved Upper Bound of Linear 2-arboricity of Planar Graphs
原文传递
导出
摘要 图G的线性2-荫度,记作la_2(G),是使得图G能够被剖分成k个边不交森林的最小正整数k,其中每个森林的每棵树是长度至多为2的路.本文给出了可平面图和没有三角形的可平面图的线性2-荫度的新上界,即证明了:(1)对于一般可平面图,当△≡0,3(mod 4)时,la_2(G)≤[△/2]+9;当△≡1,2(mod 4)时,1a_2(G)≤[△/2]+8;(2)对于不含三角形的可平面图,当△≡0,3(mod 4)时,la_2(G)≤[△/2]+5;当△≡1,2(mod 4)时,la_2(G)≤[△/2]+6;其中△为图G的最大度. Let G be a graph with maximum degree △ The linear 2-arboricity of G, denoted by la2(G), is the least integer k such that G can be decomposed into k edge disjoint forests, whose component trees are paths of length at most 2. In this note, we show that (1) for general planar graphs, la2(G) ≤ [△/2]+ 9 if△ ≡ 0, 3 (mod 4), and la2(G) 〈 [△/2] + 8 if△ ≡ 1,2 (mod 4); (2) for triangle-free planar graphs, la2(G)≤[△/2]+ 5 if A ≡0,3 (mod 4), and la2(G) [△/2]+ 6 if △≡ 1, 2 (mod 4). These results improve known upper bounds of la2 (G) for general planar graphs and triangular- free planar graphs, respectively.
出处 《数学进展》 CSCD 北大核心 2016年第2期185-189,共5页 Advances in Mathematics(China)
基金 Supported by NSFC(No.11271335)
关键词 可平面图 不含三角形的可平面图 线性荫度 线性2-荫度 planar graph triangle-free planar graph linear arboricity linear 2-arboricity
  • 相关文献

参考文献13

  • 1Akiyama, J., Three developing topics in graph theory, Doctoral Dissertation, Tokyo: University of Tokyo, 1980. 被引量:1
  • 2Akiyama, J., Exoo, G. and Harary, F., Covering and packing in graphs III: cyclic and acyclic invariants, Math. Slovaca, 1980, 30(4): 405-417. 被引量:1
  • 3Aldred, R.E.L. and Wormald, N.C., More on the linear k-arboricity of regular graphs, Australas. J. Combin., 1998, 18: 97-104. 被引量:1
  • 4Bermond, J.C., Fouquet, J.L., Habib, M. and Peroche, B., On linear k-arboricity, Discrete Math., 1984, 52(2/3): 123-132. 被引量:1
  • 5Borodin, O.V., On the total coloring of planar graphs, J. Reine Angew. Math., 1989, 394: 180-185. 被引量:1
  • 6Chen, B.L., Fu, H.L. and Huang, K.C., Decomposing graphs into forests of paths with size less than three, Australas. J. Combin., 1991, 3: 55-73. 被引量:1
  • 7Chen, H.Y., Tan, X. and Wu, J.L., The linear 2-arboricity of planar graphs without adjacent short cycles, Bull. Korean Math. Soc., 2012, 49(1): 145-154. 被引量:1
  • 8Enomoto, H. and Peroche, B., The linear arboricity of some regular graphs, J. Graph Theory, 1994, 8(2): 309-324. 被引量:1
  • 9Guldan, F., The linear arboricity of 10 regular graphs, Math. Slovaca, 1986, 36(3): 225-228. 被引量:1
  • 10Habib, M. and P@roche, B., Some problems about linear arboricity, Discrete Math., 1982, 41(2): 219-220. 被引量:1

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部