期刊文献+

基于Tamura特征的虹膜结构密度计算方法 被引量:9

Calculation Method of Iris Structure Density Based on Tamura Features
下载PDF
导出
摘要 虹膜诊断学是一门通过分析眼睛虹膜纤维组织的色彩与结构,来判断身体组织健康状况的学科,不同人眼虹膜的纤维结构的密度存在差异,可用于判断身体组织健康状况。文中介绍了一种基于Tamura纹理特征中的粗糙度、对比度和方向度的虹膜纤维结构密度计算方法。在使用Tamura算法之前对图片进行归一化、直方图均衡和局部二值化三步预处理,以减小直接应用Tamura算法的背景、光照不均匀的影响,减小结果误差。选取3幅典型图像代表三个等级的虹膜纤维结构密度,进而计算3幅典型图像的Tamura纹理特征以确定虹膜纤维结构密度与所选取特征间的关系。最后将该算法应用到沈阳工业大学视觉检测技术研究所自建虹膜库中的60幅图片样本中,结果表明该方法与主观粗糙度判断一致,切实有效。 Iris diagnostics is a subject to judge the body health by analyzing color and structure of iris fiber tissue. The densities of different fiber structures of human eyes are different, which can be used to judge body health. A calculation method of iris fiber structure based on roughness, contrast and the direction of Tamura texture features is introduced. The image preprocessing is carded on including normalization, histogram equalization and local binarization before utilization of Tamura algorithm, to reduce the influence of uneven illumination by using Tamura algorithm directly and the result error. Three typical images are selected to represent three levels iris fiber structure density ,calculating Tamura texture features of three typical images to determine the relationships between iris fiber structure density and selected characteristics. Finally ,the algorithm is applied to 60 image samples in iris library built by visual inspection techniques institute in Shenyang University of Technology, and the results show that the method is consistent with the subjective judgment of roughness, which is practical and effective.
机构地区 沈阳工业大学
出处 《计算机技术与发展》 2016年第3期36-39,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(61271365) 辽宁省博士启动基金项目(20131078)
关键词 Tamura纹理特征 粗糙度 虹膜纤维结构密度 局部二值化 Tamura texture feature roughness iris fiber structure density partial binarization
  • 相关文献

参考文献15

  • 1钟杰.实用图解彩虹学[M].台湾:正光书局,2007. 被引量:1
  • 2王龄.观虹膜知健康[M].沈阳:辽宁科学技术出版社,2010. 被引量:3
  • 3从峰.易虹膜生命健康学[M].北京:北京交通大学出版社,2009. 被引量:1
  • 4Csekey A. The advantages of using iridology in health care [ M ]. Canada : Iridologys ' Association of Canada, 2008 : 53 - 55. 被引量:1
  • 5Tamura H, Mori S, Yamawaki T. Texture features correspond- ing to visual perception[ J ]. IEEE Trans on Systems,Man and Cybernetics, 1978,8 ( 6 ) :460-473. 被引量:1
  • 6郝玉保,王仁礼,马军,苏斌,郑建华.改进Tamura纹理特征的图像检索方法[J].测绘科学,2010,35(4):136-138. 被引量:13
  • 7Smith J R, Chang S F. Automated binary texture feature sets for image retrieval[ C ]//Proc of IEEE international conf on a- coustics,speech, & signal processing. [ s. 1. ] : IEEE, 1996: 233 -235. 被引量:1
  • 8Haraliek R M, Shanmugan K, Dinstein I H. Textural features for image classification [ J ] IEEE Trans on System, Man and Cybernetics, 1973,3 (6) :610-621. 被引量:1
  • 9王成儒,吴娅辉.旋转不变纹理特征用于两级图像检索[J].光电工程,2005,32(3):70-72. 被引量:10
  • 10Niblack C W, Barber R, Equitz W, et al. The QBIC project: querying images by content using color, texture, and shape [C]//Proc of SPIE. Is. 1. ]: Is. n. ],1993:173-187. 被引量:1

二级参考文献118

  • 1王成儒,吴娅辉.旋转不变纹理特征用于两级图像检索[J].光电工程,2005,32(3):70-72. 被引量:10
  • 2李弼程,彭天强,彭波,等.智能图象处理技术[M].北京:电子工业出版社,2004:357. 被引量:5
  • 3John R,Smith,Shih-fu Chang Automated binary texture feature sets for image retrieval[J].In Proc.IEEE Int.Conf.Acoust.,Speech,and Signal Proc,1996(5). 被引量:1
  • 4Robert M,Haralick,K Shanmugam,Its' hak Dinstein Texture features for image classification[J].IEEE Trans.On Sys,Man,and Cyb,1973,Smc-3 (6):610-621. 被引量:1
  • 5T Ojala,M Pietikainen,T Maenpaa.Gray scale and rotation invariant texture classification with Local Binary Patterns[J].Computer Vision Proceedings,ECCV 2000,Lecture Notes in Computer Science 1842,Springer:404-420. 被引量:1
  • 6HE Dong-chen,WANG Li.Texture unit,texture spectrum,and texture analysis[J].IEEE Transactions on Remote Sensing,1990,28(4). 被引量:1
  • 7Tamura H,Mori S,Yamawaki T.Texture features corresponding to visual perception[J].IEEE Trans.On Systems,Man and Cybemetics,1978,Smc-8 (6):460-473. 被引量:1
  • 8Muller H,Muller W.Performance evaluation in contentbased image retrieval:overview and proposals[J].Pattem Recognition Letters,2001,22(5):593-601. 被引量:1
  • 9MANJUNATH B S, MAW Y. Texture features for browsing and retrieval of image data[J]. IEEE Trans. Pattern Anal. Math.Intell, 1996, 18(8): 837-842. 被引量:1
  • 10SHIRAZI M N, NODA H, TAKAO N. Texture classification based on Markov modeling in wavelet feature space [J]. Image and Vision computing, 2000, 18(12): 967-973. 被引量:1

共引文献488

同被引文献120

引证文献9

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部