摘要
为了提高含硫管道的耐腐蚀性能,通过对ANSYS焊接温度场热源理论和边界条件进行研究,建立了堆焊过程的数学模型和物理模型,对X65钢管内壁堆焊625镍基合金温度场和应力场进行了动态模拟。模拟分析结果显示,焊接温度高达1 700℃,堆焊层和钢管界面形成了比较好的熔合;堆焊结构的径向和轴向残余应力均很小,钢管表面残余应力为压应力,最大残余压应力达202 MPa。研究结果表明,采用合理的焊接参数,在X65钢管内壁堆焊625镍基合金层,可保证堆焊结构的可靠性,提高管道的耐腐蚀性能。
In order to increase the corrosion resistance performance of sulfur-containing pipeline, after research on ANSYS welding temperature field heat source theory and boundary conditions, the mathematical model and physical model of surfacing welding process were established, and the dynamic simulation was conducted for 625 nickel-base alloy temperature field and stress field of X65 steel pipe inwall surfacing welding. The simulation results indicated that when the welding temperature is as high as 1 700 ℃, the surfacing welding layer and steel pipe interface form better fusion; the residual stress of transverse and longitudinal direction both are small, the residual stress on steel pipe surface is compressive stress, the maximum stress value is 202 MPa. The research result showed that adopting reasonable welding parameters to carry out 625nickel-base alloy surfacing welding on X65 steel pipe inwall, which can ensure the reliability of surfacing welding structure and increase the corrosion resistance performance of pipeline.
出处
《焊管》
2016年第2期14-18,共5页
Welded Pipe and Tube
基金
国家科技重大基金支助项目"深水水下生产设施制造测试装备及技术"(项目号2011ZX05027-004)
关键词
X65钢管
堆焊
625镍基合金
数值模拟
X65 steel pipe
surfacing welding
625 nickel-base alloy
numerical simulation