期刊文献+

基于粒子群算法的3维激光雷达回波分解 被引量:9

3-D lidar echo decomposition based on particle swarm optimization
下载PDF
导出
摘要 为了提高3维激光雷达回波分解的精度和准确度,采用粒子群算法与最小二乘法相结合的方法,分析了激光雷达回波分解原理以及粒子群算法原理,研究了粒子群算法在激光雷达回波信号分解中的应用;进行了理论分析与实际数据验证,取得了实际激光雷达回波数据的分解结果。结果表明,采用粒子群算法与最小二乘法相结合的分解方法,激光雷达回波可以更高精度地分解为一系列单个波形的叠加,并获得了延时、强度及脉宽等参量,拟合度提高至0.989,一定程度上抑制了噪声的干扰。该算法可以有效提高激光雷达回波分解的精度。 In order to improve accuracy and precision of lidar echo decomposition, the theory combining particle swarm optimization algorithm with the least squares method was used and the principles of lidar echo decomposition and particle swarm optimization algorithm were analyzed. The application of particle swarm optimization algorithm in lidar echo decomposition was studied. After theoretical analysis and experimental verification, real data of decomposition experiment was gotten. The results show that lidar echo can be decomposed into a series of single waveform by the combining method. The fitting degree was improved to 0.989 by using the parameters of time delay, intensity and pulse width. It may reduce noise interference to some extent. The result shows this algorithm is effective and feasible.
出处 《激光技术》 CAS CSCD 北大核心 2016年第2期284-287,共4页 Laser Technology
基金 海军总医院重大专项基金资助项目(AHJ2011Z001)
关键词 激光技术 回波分解 参量拟合 粒子群算法 laser technique echo decomposition parameter fitting particle swarm optimization
  • 相关文献

参考文献11

二级参考文献92

共引文献239

同被引文献73

引证文献9

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部