期刊文献+

局部分布信息增强的视觉单词描述与动作识别 被引量:11

An Improved Scheme of Visual Words Description and Action Recognition Using Local Enhanced Distribution Information
下载PDF
导出
摘要 传统的单词包(Bag-Of-Words,BOW)算法由于缺少特征之间的分布信息容易造成动作混淆,并且单词包大小的选择对识别结果具有较大影响。为了体现兴趣点的分布信息,该文在时空邻域内计算兴趣点之间的位置关系作为其局部时空分布一致性特征,并提出了融合兴趣点表观特征的增强单词包算法,采用多类分类支持向量机(Support Vector Machine,SVM)实现分类识别。分别针对单人和多人动作识别,在KTH数据集和UT-interaction数据集上进行实验。与传统单词包算法相比,增强单词包算法不仅提高了识别效率,而且削弱了单词包大小变化对识别率的影响,实验结果验证了算法的有效性。 The traditional Bag-Of-Words(BOW) model easy causes confusion of different action classes due to the lack of distribution information among features. And the size of BOW has a large effect on recognition rate. In order to reflect the distribution information of interesting points, the position relationship of interesting points in local spatio-temporal region is calculated as the consistency of distribution features. And the appearance features are fused to build the enhanced BOW model. SVM is adopted for multi-classes recognition. The experiment is carried out on KTH dataset for single person action recognition and UT-interaction dataset for multi-person abnormal action recognition. Compared with traditional BOW model, the enhanced BOW algorithm not only has a great improvement in recognition rate, but also reduces the influence of BOW model's size on recognition rate. The experiment results of the proposed algorithm show the validity and good performance.
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第3期549-556,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61179045)~~
关键词 人体行为识别 局部分布特征 增强单词包模型 支持向量机 Human action recognition Local distribution features Enhanced Bag-Of-Words(BOW) model Support Vector Machine(SVM)
  • 相关文献

参考文献17

  • 1胡琼,秦磊,黄庆明.基于视觉的人体动作识别综述[J].计算机学报,2013,36(12):2512-2524. 被引量:123
  • 2BEBAR A A and HEMAYED E E. Comparative study for feature detector in human activity recognition[C]. IEEE the9th International conference on Computer Engineering Conference, Giza, 2013: 19-24. doi: 10.1109/ICENCO.2013. 6736470. 被引量:1
  • 3LI F and DU J X. Local spatio-temporal interest point detection for human action recognition[C]. IEEE the 5th International Conference on Advanced Computational Intelligence, Nanjing, 2012: 579-582. doi: 10.1109/ICACI. 2012.6463231. 被引量:1
  • 4ONOFRI L, SODA P, and IANNELLO G. Multiple subsequence combination in human action recognition[J]. IEEE Journal on Computer Vision, 2014, 8(1): 26-34. doi: 10.1049/iet-cvi.2013.0015. 被引量:1
  • 5FOGGIA P, PERCANNELLA G, SAGGESE A, et al. Recognizing human actions by a bag of visual words[C]. IEEE International Conference on Systems, Man, and Cybernetics~ Manchester, 2013: 2910-2915. doi: 10.1109/SMC.2013.496. 被引量:1
  • 6ZHANG X, MIAO Z J, and WAN L. Human action categories using motion descriptors[C]. IEEE 19th International Conference on hnage Processing, Orlando, FL, 2012: 1381-1384. doi: 10.1109/ICIP.2012.6467126. 被引量:1
  • 7LI Y and KUAI Y H. Action recognition based on spatio-temporal interest point[C]. IEEE the 5th International. 被引量:1
  • 8Conference on Biomedical Engineering and Informatics, Chongqing, 2012: 181-185. doi: 10.1109/BMEI.2012.6512972. 被引量:1
  • 9REN H and MOSELUND T B. Action recognition using salient neighboring histograms[C]. IEEE the 20th International Conference on Image Processing, Melbourne, VIC, 2013: 2807-2811. doi: 10.1109/ICIP.2013.6738578. 被引量:1
  • 10COZAR J R, GONZALEZ-LINARES J M, GUIL N, et al. Visual words selection for human action classification[C]. International Conference on High Performance Computing and Simulation, Madrid, 2012: 188-194. doi: 10.1109/ HPCSim.2012.6266910. 被引量:1

二级参考文献6

  • 1Kishore K. Reddy,Mubarak Shah.Recognizing 50 human action categories of web videos[J].Machine Vision and Applications.2013(5) 被引量:1
  • 2Chris Ellis,Syed Zain Masood,Marshall F. Tappen,Joseph J. LaViola,Rahul Sukthankar.Exploring the Trade-off Between Accuracy and Observational Latency in Action Recognition[J].International Journal of Computer Vision.2013(3) 被引量:1
  • 3Rongrong Ji,Hongxun Yao,Xiaoshuai Sun.Actor-independent action search using spatiotemporal vocabulary with appearance hashing[J].Pattern Recognition.2010(3) 被引量:1
  • 4Juan Carlos Niebles,Hongcheng Wang,Li Fei-Fei.Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words[J].International Journal of Computer Vision.2008(3) 被引量:1
  • 5Ivan Laptev.On Space-Time Interest Points[J].International Journal of Computer Vision (-).2005(2-3) 被引量:1
  • 6黎洪松,李达.人体运动分析研究的若干新进展[J].模式识别与人工智能,2009,22(1):70-78. 被引量:38

共引文献122

同被引文献45

引证文献11

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部