期刊文献+

一种基于目标先验信息的视觉跟踪算法 被引量:2

A visual saliency tracking algorithm based onpriori information
下载PDF
导出
摘要 针对运动目标跟踪过程中出现的遮挡问题,提出了基于目标先验信息的视觉显著性遮挡目标跟踪算法。在粒子滤波框架下,利用目标先验信息生成视觉显著图,并根据粒子区域颜色特征与目标颜色特征模板之间的相似度来判断遮挡情况。当遮挡发生时,提高特征融合公式中显著性特征的融合权重,从而充分利用目标未被遮挡部分信息来完成跟踪。实验结果表明,利用目标先验信息的目标跟踪算法能显著提升跟踪遮挡目标的鲁棒性。 To address the occlusion problem during target tracking,a particle filter tracking algorithm based on visual saliency and priori information of the target was presented. In the framework of particle filter,the visual saliency map is produced using the priori information of the target and the occlusion situation is decided on the similarity between the color feature in the particle area and the target area. When occlusion happens,the weight of the saliency feature is increased in the feature fusion formula,so that the object can be located using the information of the part that not be occluded on the object. Experimental results show that the algorithm can effectively deal with the situation when target is occluded.
作者 吴世东
出处 《微型机与应用》 2016年第4期46-49,共4页 Microcomputer & Its Applications
关键词 目标跟踪 先验信息 粒子滤波 显著性特征 object tracking priori information particle filter saliency feature
  • 相关文献

参考文献12

二级参考文献78

  • 1司端锋,韩心慧,龙勤,潘爱民.SIP标准中的核心技术与研究进展[J].软件学报,2005,16(2):239-250. 被引量:96
  • 2邹国辉,敬忠良,胡洪涛.基于优化组合重采样的粒子滤波算法[J].上海交通大学学报,2006,40(7):1135-1139. 被引量:43
  • 3ilmaz A, Javed O, Shah M. Object tracking: A survey[J]. ACM Computing Surveys, 2006, 38(4): 1-45. 被引量:1
  • 4Jepson A D, Fleet D J, E1-Maraghi T E Robust online appearance models for visual tracking[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(10): 1296-1311. 被引量:1
  • 5Wang Q, Chen F, Xn W L, et al. Object tracking via partial least squares analysis[J]. IEEE Trans on Image Processing, 2012, 21(10): 4454-4465. 被引量:1
  • 6Ross D A, Lim J, Lin R S, et al. Incremental learning for robust visual tracking[J]. Int J of Computer Vision, 2008, 77(1/2/3): 125-141. 被引量:1
  • 7Mei X, Ling H B. Robust visual tracking and vehicle classification via sparse representation[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2259-2272. 被引量:1
  • 8Adam A, Rivlin E, Shimshoni I. Robust fragments-based tracking using the integral histogram[C]. Proc of IEEE Conf on Computer Vision and Pattern Recognition. New York, 2006: 798-805. 被引量:1
  • 9Zhang K, Zhang L, Yang M H. Real-time compressive tracking[C]. Proc of 12th Eur Conf on Computer Vision. Florence, 2012: 864-877. 被引量:1
  • 10Liu B Y, Huang J Z, Yang L, et al. Robust tracking using local sparse appearance model and K-selection[C]. Proc of IEEE Conf on Computer Vision and Pattern Recognition. Colorado: Springs, 2011: 1313-1320. 被引量:1

共引文献40

同被引文献6

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部