期刊文献+

共形几何代数与机器人运动学的形式化 被引量:3

Formalization of Conformal Geometric Algebra and Robot Kinematics
下载PDF
导出
摘要 共形几何代数作为一种新的几何表示和计算系统,它为经典几何提供了简洁、直观和统一的齐性代数框架,目前在现代科技的各个领域有很广泛的应用,但是利用共形几何代数进行计算和建模分析的传统方法如数值计算方法和符号方法存在计算不精确等问题.定理证明方法是一种验证系统正确性的严密的形式化方法.在高阶逻辑证明工具HOL-Light中建立共形几何代数系统的形式化模型,提出基本代数运算、几何体表示和几何变换等理论的相关逻辑定义和性质证明.最后为了说明共形几何代数形式化的有效性和实用性,基于共形几何逻辑模型对5R串联机器人的运动学反解进行形式化建模并提出验证方案. Conformal Geometric Algebra( CGA) is a modern mathematical language for geometric representation and computation,which provides a unified compact homogeneous algebraic framework for classical geometries. In the last fewyears it has? been widely ? used in many high-tech? fields. Traditionally,CGA based analysis has been done using computer based numerical techniques or symbolic methods. However,both of these techniques cannot guarantee accurate analysis. Theorem proving is one of the rigorous formal methods. This paper established a formal model of CGA in the higher-order-logic proof tool HOL-Light. The correctness of some definitions and properties are proved,mainly including the basic algebraic? operation,representation of geometric entities and their transformations. In order to illustrate the practical effectiveness and utilization of our work,we use it to formally model the inverse kinematics of 5 degrees of freedom( DOF) robotic manipulator and propose the corresponding verification scheme.
出处 《小型微型计算机系统》 CSCD 北大核心 2016年第3期555-561,共7页 Journal of Chinese Computer Systems
基金 国际科技合作计划项目(2010DFB10930,2011DFG13000)资助 国家自然科学基金项目(61070049,61170304,61104035,61373034,61303014,61472468)资助 北京市教委科研基地建设项目(TJSHG201310028014)资助 北京市属高等学校创新团队建设与教师职业发展计划项目(IDHT20150507)资助 北京市优秀人才培养资助项目 北京市属高校青年拔尖人才培育计划资助
关键词 共形几何代数 形式化验证 定理证明 HOL-Light 运动学反解 Conformal Geometric Algebra(CGA) formal verification theorem proving HOL-Light inverse kinematics
  • 相关文献

参考文献1

二级参考文献16

  • 1李洪波.共形几何代数——几何代数的新理论和计算框架[J].计算机辅助设计与图形学学报,2005,17(11):2383-2393. 被引量:36
  • 2Hartley R,Zissermann A.Multiple view geometry in computer vision[M].Cambridge:Cambridge University Press,2000 被引量:1
  • 3Sommer G.Geometric computing with clifford algebras[M].Heidelberg:Springer,2001 被引量:1
  • 4Fontijne D,Dorst L.Modeling 3D Euclidean geometryperformance and elegance of five models of 3D Euclidean geometry in a ray tracing application[J].IEEE Computer Graphics and Applications,2003,23(2):68-78 被引量:1
  • 5Hildenbrand D,Fontijne D,Perwass C.Geometric algebra and its application to computer graphics[M].Tutorial 3 of Eurographics 2004,Grenoble:INRIA and Eurographics Association,2004 被引量:1
  • 6Sturmfels B.Algorithms in invariant theory[M].Wien:Springer,1993 被引量:1
  • 7White N.Invariant methods in discrete and computational geometry[M].Dordrecht:Kluwer,1994 被引量:1
  • 8Li H.Automated theorem proving in the homogeneous model with clifford bracket algebra[C] //Dorst L,et al.Proceedings of Applications of Geometric Algebra in Computer Science and Engineering,Birkhauser,Boston,2002:69-78 被引量:1
  • 9Li H.Clifford algebras and geometric computation[M].//Chen F,Wang D,Geometric Computation.Singapore:World Scientific,2004:221-247 被引量:1
  • 10Li H.Automated geometric theorem proving,Clifford bracket algebra and Clifford expansions[C] //Qian T,et al.Proceedings of Trends in Mathematics:Advances in Analysis and Geometry,Birkhauser Basel,2004:345-363 被引量:1

共引文献19

同被引文献21

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部