摘要
共享创新法和词源统计法是亲属语言(方言)谱系分类中最常用的两种方法。基于对语言接触的调查研究,核心词比语音、语法特征更为稳定,不易在语言或方言间扩散。因此,基于严格语音对应的100核心同源词比例的严式词源统计法更适合亲属语言(方言)的谱系分类。核心同源词的确定依赖于语言(方言)间严格的语音对应以及在此基础上得到的核心一致对应词集。共享创新法如果能够排除借用和语言类型上的平行变化,仍然是谱系分类的一种重要方法。
Shared innovation and lexicostatistics are two methods most commonly used for the genetic classification of related languages (dialects). According to the research on language contact, the kernel words, which seldom diffuse among different languages or dia- lects, are more stable than phonology and grammar. Therefore, the strict lexieostatistics based on the proportion of the cognates in the 100 kernel words is more appropriate to the relevant genetic classification. The confirmation of the cognates in the kernel words depends on the precise phonetic correspondences and morphemes which are consistent with these kemel words. Shared innovation can still be used for the genetic classification if the borrowing and typologically parallel changes are excluded.
出处
《云南民族大学学报(哲学社会科学版)》
CSSCI
北大核心
2016年第2期147-154,共8页
Journal of Yunnan Minzu University(Philosophy and Social Sciences Edition)
基金
国家社会科学基金重大项目"基于中国语言及方言的语言接触类型和演化建模研究"(项目编号:14ZBD102)
国家社会科学基金重点项目"基于严格语音对应的汉语与民族语关系字专题研究"(项目编号:13AZD051)
教育部人文社会科学重点研究基地重大项目"基于系统语音对应的核心词分阶及建模研究"(项目编号:11JJD740004)阶段成果
关键词
谱系分类
共享创新法
词源统计法
核心词
genetic classification
shared innovation
lexicostatistics
kernel words