期刊文献+

局部放电大数据的并行PRPD分析与模式识别 被引量:26

Parallel Phase Resolved Partial Discharge Analysis for Pattern Recognition on Massive PD Data
下载PDF
导出
摘要 随着在线监测的推广应用,输变电设备监测中心已在国内许多电网相继建立,在极端条件下很多电力设备的局部放电(partial discharge,PD)越限数据会蜂拥而至,其快速处理最具挑战性。针对传统局部放电相位分析(phase resolved partial discharge,PRPD)方法处理大数据时的效率低下问题,该文提出了基于Map Reduce编程模型的并行化PRPD分析算法(P-PRPD),实现了海量PD信号的并行基本参数提取、统计特征计算与放电类型识别。在实验室中构造了4种放电模型并采集了大量PD信号,对所提算法在拥有6台计算节点的Hadoop平台上进行了详细的性能评估和实验分析。实验和分析结果表明,该算法在处理海量PD信号时较传统方法具有显著的效率提升,模式识别总准确率达到90%,满足工程应用需求。 As the popularization and application of on-line monitoring, power transmission and transformation equipment monitoring centers have been set up in many domestic power grid. In extreme conditions, out-of-limit data of partial discharge (PD) from a number of equipments will flock into monitoring center, leaving a huge challenge for quickly handling these data. In view of the inefficiency of conventional phase resolved partial discharge (PRPD) analysis method in dealing with big data, a novel parallel one called P-PRPD was presented based on MapReduce programming model. By means of P-PRPD, extraction of fundamental parameters, calculation of statistical characteristics and pattern recognition were all conducted in a parallel manner. Eventually, massive cycles of PD signals from four categories of typical artificial PD models in the laboratory were employed for evaluation of the proposed approach. Detailed experiments were carried out on Hadoop cloud-computing platform with six compute nodes. Results demonstrate that the proposed parallel approach outperforms the conventional sequential one in terms of efficiency for massive PD data processing and achieves 90% of total recognition accuracy, which can satisfy most engineering applications.
出处 《中国电机工程学报》 EI CSCD 北大核心 2016年第5期1236-1244,共9页 Proceedings of the CSEE
基金 中央高校基本科研业务费专项资金资助项目(2015XS106) 河北省自然科学基金项目(F2014502069)~~
关键词 大数据 局部放电 局部放电相位分析 数据处理 云计算 MAPREDUCE big data partial discharge phase resolvedpartial discharge (PRPD) data processing cloud computing MapReduce
  • 相关文献

参考文献22

  • 1宋亚奇,周国亮,朱永利.智能电网大数据处理技术现状与挑战[J].电网技术,2013,37(4):927-935. 被引量:542
  • 2Williams J W, Aggour K S, Interrante J, et al. Bridging high velocity and high volume industrial big data through distributed in-memory storage & analytics[C]//2014 IEEE International Conference on Big Data. Washington, DC: IEEE, 2014: 932-941. 被引量:1
  • 3Qiang G, Weichun G, Chenggang W, et al. High voltage equipment online monitoring system of smart substation [C]//IEEE PES Innovative Smart Grid Technologies. TianJin, China: IEEE , 2012: 1-5. 被引量:1
  • 4IEC 60270. High voltage test techniques-Partial discharge measurements[S]. 2000. 被引量:1
  • 5Shafiq M, Kutt L, Lehtonen M, et al. Parameters identification and modeling of high-frequency currenttransducer for partial discharge measurements[J]. Sensors Journal, IEEE, 2013, 13(3): 1081-1091. 被引量:1
  • 6李燕青,陈志业,律方成,刘云鹏.超声波法进行变压器局部放电模式识别的研究[J].中国电机工程学报,2003,23(2):108-111. 被引量:64
  • 7Jiang T, Li J, Zheng Y, et al. Improved bagging algorithm for pattern recognition in UHF signals of partial discharges[J]. Energies, 2011, 4(7): 1087-1101. 被引量:1
  • 8Majidi M, Oskuoee M. Improving pattern recognition accuracy of partial discharges by new data preprocessing methods[J]. Electric Power Systems Research, 2015, 119: 100-110. 被引量:1
  • 9司文荣,李军浩,袁鹏,李延沐,梁永春,李彦明.基于波形非线性映射的多局部放电脉冲群快速分类[J].电工技术学报,2009,24(3):216-221. 被引量:14
  • 10Wu R, Chung I, Chang C. Classification of partial discharge patterns in GIS using adaptive neuro-fuzzy inference system[J]. Journal of the Chinese Institute of Engineers, 2014, 37(8): 1043-1054. 被引量:1

二级参考文献178

共引文献895

同被引文献265

引证文献26

二级引证文献259

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部