期刊文献+

回归-Elman网络在矿坝变形预测中的应用 被引量:5

Application of regression-Elman network model to the dam deformation forcasting
下载PDF
导出
摘要 金矿开展矿坝的变形监测工作,引入多层递阶回归分析模型,有较高的预测精度,但方法较繁琐,计算较复杂。由于变形数据可分离成趋势项与随机项,趋势项可用多元线性回归良好地拟合;随机项的预测,文中采用Elman网络建模计算,最后利用矿坝的实测高程位移数据进行验证,并与多层递阶回归进行比较。结果表明:回归-Elman网络模型比多层递阶回归的预测精度更高,效果更好,且方法简洁实用性强。 A deformation monitoring for a gold mine is conducted in Shangdong using multi-layered hierarchical regression analysis.A good prediction accuracy is obtained,but the method is complicated in calculation.The deformation monitoring data can be seperated into trend values and random values.Regression method can predict trend values well.To predict the random value,this paper has introduced Elman neural network.The actual monitoring data for elevation displacement variation of mine dam is used for model verification.The prediction result is compared with multi-level recursive regression.It is concluded that better accuracy of prediction can be obtained through the regression-Elman network model and this method is concise and practical.
出处 《测绘工程》 CSCD 2016年第1期39-42,共4页 Engineering of Surveying and Mapping
关键词 ELMAN神经网络 回归分析 变形预测 多层递阶回归 组合模型 Elman neural network regression deformation prediction multi-level recursive regression combined model
  • 相关文献

参考文献14

二级参考文献81

共引文献260

同被引文献52

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部