期刊文献+

脉冲介质阻挡放电脱除N_2/NO体系中NO的模拟研究 被引量:4

Simulation Study of the Removal of NO From N_2/NO Mixture by Pulsed Dielectric-barrier Discharge at Atmospheric Pressure
下载PDF
导出
摘要 NO是重要的大气污染物之一,为了深入了解脉冲介质阻挡放电去除N2/NO体系中NO的机理,采用一维自洽的流体力学模型对N2/NO中大气压脉冲放电进行了模拟研究,并分析讨论了各种放电参数对NO去除效率的影响。模拟结果表明:NO的去除主要通过还原反应N+NO→N2+O来实现;N原子是脱除NO的主要活性粒子,它来源于电压上升沿和下降沿的2次放电,并主要通过电子直接碰撞解离N2分子产生;放电中产生的N原子体积分数的高低直接决定NO的脱除效率;电压脉冲幅度越大,上升和下降时间越短,介质层越薄,或放电间隙越小,则脉冲放电产生的N原子体积分数就越高,越有利于NO的脱除;在其他参数不变时,存在1个最佳脉冲宽度,在此脉冲宽度下NO的脱除率最高。 NO is one of the important air pollutants. Based on one-dimension self-consistent fluid mode, the removal mechanism of NO from N2/NO mixture by pulsed dielectric-barrier discharge at atmospheric pressure was studied. The effects of the discharge parameters on NO removal rate were also investigated and discussed. Simulation results show that NO is removed mainly through the reaction N+NO→N2 +O. N atom is the main active species that removes the NO from N2/NO mixture. It comes from the two discharges occurring at the rising front and the falling front of applied voltage pulse, and it is mainly produced by the electron collision reaction with nitrogen which is the background gas. The NO removal rate depends on the concentration of N atom produced by pulsed dielectric barrier discharge (DBD)in N2/NO. The bigger the voltage amplitude, the shorter the rising and falling time, the thinner the dielectric layer, or the smaller the discharge gap, the higher the resultant N concentration and thus the higher the nitric oxide removal rate. When keeping other parameters unchanged, there exists an optimal voltage pulse width which results in the maximum NO removal rate.
出处 《高电压技术》 EI CAS CSCD 北大核心 2016年第2期405-413,共9页 High Voltage Engineering
基金 国家自然科学基金(11405022)~~
关键词 介质阻挡放电 脉冲电压 N2/NO混合气体 NO脱除率 一维流体力学模型 大气压放电 dielectric barrier discharge pulsed voltage N2/NO mixture NO removal rate one-dimensional fluid model atmospheric-pressure discharge
  • 相关文献

参考文献30

  • 1Mizuno A, Shimizu K, Chakrabarti A, et al. NOx removal process using plused discharge plasma[J]. IEEE Transactions on Plasma Sciences, 1995, 31(5): 957-962. 被引量:1
  • 2Mok Y S, Nam C M, Cho M H, et al. Decomposition of volatile organic compounds and nitric oxide by nonthermal plasma discharge processes[J]. IEEE Transactions on Plasma Sciences, 2002, 30(1): 408-416. 被引量:1
  • 3闫克平,李树然,冯卫强,郑钦臻,杜艳艳,沈欣军,戴绍龙,寇艳芹,徐羽贞,王仕龙,韩平,朱安娜,冯文强,黄逸凡,刘振.高电压环境工程应用研究关键技术问题分析及展望[J].高电压技术,2015,41(8):2528-2544. 被引量:90
  • 4Willibald U, Platzer K H, Wittig S. Flue gas cleaning by the electron-beam-process (I): optimization of removal efficiency and energy consumption at the ITS-facility[J]. Radiation Physics and Chemistry, 1990, 35(1/3): 422-426. 被引量:1
  • 5Wang Z, Yeboah Y D, Bai T, et al. Gap space optimization for NO removal in a non-thermal plasma discharge[J]. Plasma Chemistry and Plasma Process, 2003, 24(3): 405-420. 被引量:1
  • 6张旭东..介质阻挡放电冷等离子体去除NO的研究[D].清华大学,2003:
  • 7董淑玲..介质阻挡放电脱除NO的研究[D].南京理工大学,2007:
  • 8高旭东..介质阻挡放电脱除氮氧化物理论与实验研究[D].华北电力大学,2011:
  • 9戴栋,王其明.大气压氦气介质阻挡放电中交流驱动电压频率对击穿电压的影响[J].高低压技术,2013,39(9):2235-2240. 被引量:1
  • 10张增辉,张冠军,邵先军,等.氩气与氨气混合下的大气压介质阻挡放电[J].高低压技术,2013,39(9)22254-2259. 被引量:1

二级参考文献177

共引文献143

同被引文献47

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部