期刊文献+

面向大数据应用的多层次混合式并行方法 被引量:1

Multilevel hybrid parallel method for big data applications
下载PDF
导出
摘要 基于很多大数据应用存在对数据进行多种并行处理的需求,提出两层混合式并行方法,即执行单元的混合并行和计算模型的混合并行.通过在同一个计算节点上执行单元的混合并行,充分挖掘基础设施的计算能力,从而提高数据处理性能;采用在同一个执行引擎中集成多个计算模型的并行方法,以适合应用多样异质处理模式.不同的混合并行方法可以契合不同的数据和计算特点,以满足不同的并行目标.介绍了混合式并行方法的基本思想,并以前期开发的并行编程模型BSPCloud为基础,阐述了进程和线程混合并行、BSP和Map Reduce混合并行的主要实现机制. Many large data applications require a variety of parallel data processing. This paper presents a two-layer hybrid parallel method, i.e., hybrid parallel of execution units and hybrid parallel of computing model. By hybrid parallel of execution units on the same computing node. The computing power of infrastructure can be fully taped, and thus data processing performance can be improved. By integrating several calculation models into the same execution engine in a parallel way, diverse heterogeneous processing modes may be applied. Different hybrid parallel ways can meet different data and calculation characteristics, and meet different parallel objectives as well. This paper introduces the basic ideas of hybrid parallel methods, and describes main implementation mechanisms ofhybrid parallelism.
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第1期69-80,共12页 Journal of Shanghai University:Natural Science Edition
基金 上海市科委科研计划资助项目(15DZ1100305)
关键词 混合并行 编程模型 整体同步并行(bulk SYNCHRONOUS parallel BSP) MAPREDUCE hybrid parallelism programming model bulk synchronous parallel (BSP) MapReduce
  • 相关文献

参考文献21

二级参考文献304

  • 1周红福,宫学庆,郑凯,周傲英.基于高维空间的在线高效子空间Skyline算法——CSky[J].计算机学报,2007,30(8):1409-1417. 被引量:8
  • 2[OL].<http://hadoop.apache.org.>. 被引量:3
  • 3WinterCorp: 2005 TopTen Program Summary. http:// www. wintercorp, com/WhitePapers/WC TopTenWP. pdf. 被引量:1
  • 4TDWI Checklist Report: Big Data Analytics. http://tdwi. org/research/2010/08/Big-Data-Analytics, aspx. 被引量:1
  • 5Chaudhuri S, Dayal U. An overview of data warehousing and OLAP technology. SIGMOD Rec, 1997,26(1): 65-74. 被引量:1
  • 6Madden S, DeWitt D J, Stonebraker M. Database parallelism choices greatly impact scalability. DatabaseColumn Blog. http://www, databasecolumn, com/2007/10/database-parallelism-choices, html. 被引量:1
  • 7Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters//Proceedings of the 6th Symposium on Operating System Design and Implementation (OSDI ' 04). San Francisco, California, USA, 2004: 137-150. 被引量:1
  • 8DeWitt D J, Gerber R H, Graefe G, Heytens M L, Kumar K B, Muralikrishna M. GAMMA--A high performance dataflow database machine//Proceedings of the 12th International Conference on Very Large Data Bases (VLDB' 86). Kyoto, Japan, 1986:228-237. 被引量:1
  • 9Fushimi S, Kitsuregawa M, Tanaka H. An overview of the system software of a parallel relational database machine// Proceedings of the 12th International Conference on Very Large DataBases(VLDB'86). Kyoto, Japan, 1986:209-219. 被引量:1
  • 10Brewer E A. Towards robust distributed systems//Proceedings of the 19th Annual ACM Symposium on Principles of Distributed Computing (PODC' 00). Portland, Oregon, USA, 2000:7. 被引量:1

共引文献1149

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部