期刊文献+

改进的灵敏度剪枝极限学习机 被引量:7

Improved sensitivity-analysis based pruning extreme learning machine
原文传递
导出
摘要 针对极限学习机(ELM)网络结构优化问题,提出一种改进的灵敏度剪枝ELM(Im SAP-ELM).Im SAP-ELM将2正则化因子引入SAP-ELM中,采用留一准则确定最优隐节点数.推导基于奇异值分解的输出权重计算公式,避免矩阵奇异导致求解无效的问题.将Im SAP-ELM用于故障预测,利用多组同类型故障数据建立多个Im SAP-ELM模型,基于加权思想融合不同Im SAP-ELM的预测值.某型无人机发射机实例表明,相比于ELM、OP-ELM(最优剪枝ELM)和SAP-ELM,Im SAP-ELM耗时最高,但是Im SAP-ELM的预测误差小于其他3种方法. Aiming at the structure optimization of the extreme learning machine(ELM), an improved sensitivity-analysis based pruning ELM(ImSAP-ELM) algorithm is proposed. The l2-regularization factor is introduced into the SAP-ELM by using the ImSAP-ELM. The leave-one-out(LOO) criterion is utilized for selecting an appropriate number of hidden neurons. In addition, the computing expression of output weights based on singular value decomposition(SVD) is deduced, which overcomes the problem that computing result is invalid when the matrix is singular. The proposed ImSAP-ELM is applied to fault prediction. Associated with some groups of known fault data under the same fault type, a number of ImSAP-ELM based models are built. All the prediction values from different ImSAP-ELMs are fused with weighted sum. The case study on a certain unmanned aerial vehicle transmitter shows that, comparing with the ELM, the optimally pruned ELM(OP-ELM) and the SAP-ELM, though ImSAP-ELM time consuming is the highest, the prediction error of the ImSAP-ELM is lower than other 3 algorithms.
出处 《控制与决策》 EI CSCD 北大核心 2016年第2期249-255,共7页 Control and Decision
基金 总装院校科技创新工程项目(ZYX12080008)
关键词 剪枝算法 2正则化 奇异值分解 灵敏度分析 故障预测 pruning algorithm l2-regularization singular value decomposition sensitivity-analysis fault prediction
  • 相关文献

参考文献17

  • 1Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1): 489-501. 被引量:1
  • 2Lendasse A, He Q, Miche Y, et al. Advances in extreme learning machines(ELM2012)[J]. Neurocomputing, 2014, 128(5): 1-3. 被引量:1
  • 3韩敏,刘晓欣.一种基于互信息变量选择的极端学习机算法[J].控制与决策,2014,29(9):1576-1580. 被引量:9
  • 4Sun Z L, Wang H, Lau W S. Application of BW-ELM model on traffic sign recognition[J]. Neurocomputing, 2013, 128(5): 153-159. 被引量:1
  • 5Yuan X, Chen Y J, Zhu Q X. An extension sample classification-based extreme learning machine ensemble method for process fault diagnosis[J]. Chemical Engineering & Technology, 2014, 37(6): 911-918. 被引量:1
  • 6Alexander G, Yoan M, Anne-Mari V, et al. Long-term time series prediction using OP-ELM[J]. Neural Networks, 2014, 51(3): 50-56. 被引量:1
  • 7Jose M, Martinez M, Pablo E M, et al. Regularized extreme learning machine for regression problems[J]. Neurocomputing, 2011, 74(17): 3716-3721. 被引量:1
  • 8Fan Y T, Wu W, Yang W Y, et al. A pruning algorithm with ??1/2 regularizer for extreme learning machine[J]. J of Zhejiang University: Science C — Computer & Electronics, 2014, 15(2): 119-125. 被引量:1
  • 9Han H G, Qiao J F. A structure optimization algorithm for feedforward neural network construction[J]. Neurocomputing, 2013, 99(1): 347-357. 被引量:1
  • 10Yoan M, Antti S, Patrick B, et al. OP-ELM: Optimally pruned extreme learning machine[J]. IEEE Trans on Neural Networks, 2010, 21(1): 158-162. 被引量:1

二级参考文献33

  • 1孙红岩,毛士艺.多传感器目标识别的数据融合[J].电子学报,1995,23(10):188-193. 被引量:26
  • 2X R Li.Comparison of two measurement fusion methods for Kalman-Filter-Based multisensor data fusion[J].IEEE Transactions on Aerospace and Electronic Systems,2001,37(1):273-280. 被引量:1
  • 3B S Rao,H F Durrant-Whyte.Fully decentralized algorithm for multisensor Kalman filtering[J].IEEE Proceedings-D,1991,138(5):413-420. 被引量:1
  • 4Lang Hong.Centralized and distributed multisensor integration with uncertainties in comunication networks[J].IEEE Transactions on Aerospace and Electronic Systems,1991,27(2):370-379. 被引量:1
  • 5Bons Igelnik, Pao Yoh-han.Stochastic choice of basis functions in adaptive function approximation and the functional-link net[J].IEEE Trans on Neural Networks, 1995, 6(6): 1320-1329. 被引量:1
  • 6Huang G B, Zhu Q Y, Siew C K.Extreme learning machine: Theory and applications[J].Neurocomputing, 2006, 70(1/2/3): 489-501. 被引量:1
  • 7Decherchi S.Circular-ELM for the reduced-reference assessment of perceived image quality[J].Neurocomputing, 2013, 102(1): 78-89. 被引量:1
  • 8Huang G B, Chen L, Siew C K.Universal approximation using incremental constructive feedforward networks with random hidden nodes[J].IEEE Trans on Neural Networks, 2006, 17(4): 879-892. 被引量:1
  • 9Rong H J, Ong Y S, Tan A H, et al.A fast pruned-extreme learning machine for classification problem[J].Neurocomputing, 2008, 72(1): 4-8. 被引量:1
  • 10Miche Y, Sorjamaa A, Bas P, et al.OP-ELM: Optimally pruned extreme learning machine[J].IEEE Trans on Neural Networks, 2010, 21(1): 158-162. 被引量:1

共引文献44

同被引文献37

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部