摘要
In this work, monodisperse giant polymersomes are fabricated by dewetting of water-in-oil-in-water double emulsion droplets which are assembled by amphiphilic block copolymer molecules in a microfluidic device. The dewetting process can be tuned by solvation between solvent and amphiphilic block copolymer to get polymersomes with controllable morphology. Good solvent (chloroform and toluene) hinders dewetting process of double emulsion droplets and gets acornlike polymersomes or patched polymersomes. On the other hand, poor solvent (hexane) accelerates the dewetting process and achieves complete separation of inner water phase from oil phase to form complete bilayer polymersomes. In addition, twin polymersomes with bilayer membrane structure are formed by this facile method. The formation mechanism for different polymersomes is discussed in detail.
In this work, monodisperse giant polymersomes are fabricated by dewetting of water-in-oil-in-water double emulsion droplets which are assembled by amphiphilic block copolymer molecules in a microfluidic device. The dewetting process can be tuned by solvation between solvent and amphiphilic block copolymer to get polymersomes with controllable morphology. Good solvent (chloroform and toluene) hinders dewetting process of double emulsion droplets and gets acornlike polymersomes or patched polymersomes. On the other hand, poor solvent (hexane) accelerates the dewetting process and achieves complete separation of inner water phase from oil phase to form complete bilayer polymersomes. In addition, twin polymersomes with bilayer membrane structure are formed by this facile method. The formation mechanism for different polymersomes is discussed in detail.
基金
financially supported by the National Natural Science Foundation of China(No.50633030,Innovation Group:50921062)