摘要
The microstructure of the precipitated phases of Mg95.sGd3Zn1Zro.2 alloys with long-period stacking ordered structure before and after heat treatment is discussed. The corrosion properties of the as-cast (F), solid-solution (T4) and aging-treated (T6) alloys in 1% NaC1 solution are studied. The hydrogen evolution and electrochemical measurements display that the as-cast Mg95.sGd3Zn1Zro.2 alloy with the continuous network eutectic phase exhibits the greatest corrosion resistance, while T6 sample with some needle-like phases and the particle phases is the worst among the three alloys. It is proposed to be mainly related to the amount, composition, microstructure and distribution of the precipitated phases.
The microstructure of the precipitated phases of Mg95.sGd3Zn1Zro.2 alloys with long-period stacking ordered structure before and after heat treatment is discussed. The corrosion properties of the as-cast (F), solid-solution (T4) and aging-treated (T6) alloys in 1% NaC1 solution are studied. The hydrogen evolution and electrochemical measurements display that the as-cast Mg95.sGd3Zn1Zro.2 alloy with the continuous network eutectic phase exhibits the greatest corrosion resistance, while T6 sample with some needle-like phases and the particle phases is the worst among the three alloys. It is proposed to be mainly related to the amount, composition, microstructure and distribution of the precipitated phases.
基金
supported by the National Natural Science Foundation of China(Nos.51574175 and 51474153)
the Ph.D.Programs Foundation of Ministry of Education of China(No. 20111402110004)
the Natural Science Foundation of Shanxi Province(Nos.2009011028-3 and 2012011022-1)