期刊文献+

微穿孔板抑制不稳定燃烧的声学数值仿真 被引量:1

Acoustic numerical simulation of a micro-perforated panel absorber for combustion instability suppression
下载PDF
导出
摘要 为了研究微穿孔板吸声结构对不稳定燃烧的抑制作用,采用高精度的计算气动声学(Computational Aeroacoustics,CAA)方法开展时域下的数值仿真。首先对带有压力时滞模型的三维声学扰动方程进行求解,给出发动机不稳定燃烧的频率信息。然后通过解析模型分析微穿孔板吸声结构的阻抗特性,并由多自由度宽频阻抗模型模拟微穿孔板对该不稳定频率的抑制作用。仿真捕捉到的不稳定燃烧频率与地面试车测得的频率相一致。表明采用的计算气动声学方法及相应模型可以准确地捕捉不稳定燃烧的频率信息,并分析微穿孔板对不稳定燃烧的抑制作用,对于工程上快速预测不稳定燃烧具有一定意义。 Time-domain numerical simulation was performed by a high order computational aeroacoustics (CAA) approach in order to research the suppression of a micro-perforated panel absorber on combustion instability. Firstly, three dimensional acoustic perturbation equations with pressure time lag model were solved and frequencies of the engine were predicted. Then the acoustic impedance characteristic of a micro-perforated panel absorber was analyzed by an analytical method. A time-domain numerical simulation was carried out by multi-freedom broadband impedance model in order to research the impedance characteristic. The frequency predicted by numerical simulation showed good consistency with the experimental result. It is demonstrated that the computational aeroacoustics approach can recognize dangerous modes and analyze the suppression of a micro-perforated panel absorber on combustion instability, which can provide some reference for the engineering design of liquid rocket engine.
作者 初敏 徐旭
出处 《声学学报》 EI CSCD 北大核心 2016年第2期236-242,共7页 Acta Acustica
关键词 计算气动声学 不稳定燃烧 微穿孔板 数值仿真 稳定频率 抑制作用 吸声结构 时滞模型 Acoustic impedance Aeroacoustics Combustion Computational aeroacoustics Engines Numerical models Rocket engines Rockets
  • 相关文献

参考文献23

二级参考文献25

  • 1马大猷.微穿孔板吸声结构的理论和设计[J].中国科学,1975,18(3):38-50. 被引量:52
  • 2[1]Lewis G D,Garrison G D. The role of acoustic absorbers in preventing combustion instability[R]. AIAA Paper 71-699, 1971. 被引量:1
  • 3[2]Rice E J. A theoretical study of the acoustic impedance of orifices in the presence of a steady grazing flow[R]. NASA TM X-71903, 1976. 被引量:1
  • 4[3]Dean P D. An in situ method of wall acoustic impedance measurement in flow ducts[J]. J Sound & Vib, 1974, 34(1):97-130. 被引量:1
  • 5[4]Howe M S, Scott M I, Sipcic S R. The influence of tangential mean flow on the Rayleigh conductivity of an aperture[J]. Proc R Soc Lond, 1996, A 452: 2303-2317. 被引量:1
  • 6[5]Howe M S. Influence of wall thickness on Rayleigh conductivity and flow-induced aperture tones[J]. Journal of Fluids and Structure, 1997, 11(4): 351-366. 被引量:1
  • 7[6]Ribner H S. Reflection, transmission, and amplification of sound by a moving medium[J]. J Acoust Soc Am, 1957, 29(4): 435-441. 被引量:1
  • 8[7]Nelson P A, Halliwell N A, Doak P E. Fluid dynamics of a flow excited resonance, part I: experiment[J]. J Sound & Vib, 1981, 78(1):15-38. 被引量:1
  • 9[8]Savkar S D. Radiation of cylindrical duct acoustic modes with flow mismatch[J].J Sound & Vib, 1975, 42(3): 363-386. 被引量:1
  • 10[9]Bruggeman J C, etc. Flow induced pulsations in gas transport systems: analysis of the influence of closed side branches[J]. J Fluids Eng, 1989, 111(4): 484-491. 被引量:1

共引文献241

同被引文献11

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部