期刊文献+

基于HBase的钻井数据存储研究 被引量:3

Study of the Storage of Drilling Data Based on HBase
下载PDF
导出
摘要 提出了基于HBase的海量钻井数据存储技术。将HBase的分布式存储特点和钻井工程的实际需求相结合,设计了一个快速、高效、安全的海量钻井数据存储方案。介绍了HBase的存储模型以及系统架构,详细描述了钻井数据在HBase分布式存储系统中的存储过程。 A storage technology of the massive drilling data is proposed, which is based on HBase. A fast, efficient and safe solution of great capacity drilling data storage is designed by means of combining the distributed storage characteristics of HBase with the actual needs of drilling engineering. This paper introduces the HBase storage model and system architecture. Then the storage procedure in the distributed storage system based on HBase is introducted in detail.
出处 《软件导刊》 2016年第2期143-145,共3页 Software Guide
基金 陕西省教育厅专项科研计划(14JK1584) 西安市科技计划(CXY1346(7))
关键词 HADOOP HBASE 钻井工程 钻井数据 Hadoop HBase Drilling Engineering Drilling Data
  • 相关文献

参考文献7

二级参考文献17

  • 1Shekhar S,Chawla S.谢昆青,等.空间数据库[M].北京:机械工业出版社,2004,1~300. 被引量:17
  • 2HBase :bigtable-like structured storage for hadoop hdfs [ EB/OL ]. http ://hadoop. apache, org/hbase/,2010. 被引量:1
  • 3Fan Chang, Jeffrey Dean, Sanjay Chemawat, et al. Bigtable: a dis- tributed storage system for structured data[ C ]. Proceedings of 7th USENIX Symposium on Operating Systems Design and Implemen- tation( OSDI'06 ), Seattle, WA, USA: USENIX Association, 2006 : 205-218. 被引量:1
  • 4Dhruba Borthakur. The hadoop distributed file system:Architecture and design [ EB/OL ]. http://hadoop, apache, org/hdfs ,2011. 被引量:1
  • 5Ramaswamy Hafiharaa,Bigit Hore,Chen Li,et al. Processing spatial- keyword (SK) queries in geographic information retrieval (GIR) sys- tems[ A]. Proceedings of the lgth International Conference on Scientif- ic and Statistical Database Managem (SSDBM '07) [ C ]. Washing- ton,DC,USA:IEEE Computer Society,2007:16-25. 被引量:1
  • 6Ian De Felipe, Vagelis Hristidis, Naphtali Rishe. Keyword search on spatial databases[ A] . Proceedings of the 2008 IEEE 24th Interna- tional Conference on Data Engineering (ICDE '08 ) [ C]. Washing- ton, DC, USA: IEEE Computer Society, 2008:656 -665. 被引量:1
  • 7Cong Gao ,Christian S Jensen,Wu Ding-ming. Efficient retrieval of the top-k most relevant spatial web objects [ J ]. Proceedings of VLDB Endowment,2009,2( 1 ) :337-348. 被引量:1
  • 8Jolo B Rocha-Junior, Orestis Gkorgkas, Simon Jonassen, et al. Ef- ficient processing of Top-k spatial keyword queries [ A ]. Proceed- ings of the 12th International Conference on Advances in Spatial and Temporal Databases ( SSTD ' 11 ) [ C ]. Berlin, Heidelberg : Springer-Verla,2011:205-222. 被引量:1
  • 9Guo Wei, Guo Jing, Hu Zhi-yong. Spatial database indexing tech- nique [ M ]. Shanghai: Shanghai Jiao Tong University,Press,2006. 被引量:1
  • 10Ooi, Mcdonell K J, Sacks R Davis. Spatial kd-tree: an indexing mechanism for spatial database [ A ]. Proceedings of the 11 th Annu- M International Computer Software and Applications Conference ( COMPSAC '87 ) [ C ]. Washington, DC, USA: IEEE Computer Society, 1987:433-438. 被引量:1

共引文献67

同被引文献13

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部