期刊文献+

基于剪切波融合的时空显著性检测

Spatiotemporal saliency detection via shearlet domain fusion
下载PDF
导出
摘要 针对时空显著性框架的融合问题,提出了一种基于剪切波融合的时空显著性检测算法。先获取视频帧的空间和时间显著图,再分别对空间和时间显著图进行剪切波分解,获取系数。采用一定的机制融合对应的剪切波系数和尺度系数,通过剪切波逆变换,得到综合显著图,实现了视频的时空显著性检测。结果表明,该算法能够较好地利用空间和时间显著图提供的信息,对显著对象内部区域的标注能力更强,同时对空间和时间显著图携带的噪声具有更好的鲁棒性。 To tackle the fusion issue of spatio-temporal saliency framework,a Spatiotemporal saliency detection model via shearlet based fusion mechanism was proposed.Spatial and temporal saliency for each video frame was firstly detected.Then,the spatial and temporal saliency maps were decomposed by shearlet transform to obtain coefficients.After that,by properly fusing shearlet and scalling coefficients respectively,the final saliency map was obtained via inverse shearlet transform,which is the spatiotemporal saliency detection result for input video.Experiments show that the proposed mechanism can properly use the information in spatial and temporal saliency maps,with better performance on detecting pixels inside salient objects,and is more robust to noise compared with other models.
出处 《解放军理工大学学报(自然科学版)》 EI 北大核心 2016年第1期8-16,共9页 Journal of PLA University of Science and Technology(Natural Science Edition)
基金 江苏省自然科学基金资助项目(BK2012512) 中国博士后科学基金资助项目(2013M532205)
关键词 时空显著性检测 剪切波变换 图像融合 多尺度分析 spatio-temporal saliency detection shearlet transform image fusion multi-scale analysis
  • 相关文献

参考文献21

  • 1BORJI A,LTTI L. State-of-the-art in visual attention modeling[J~. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1); 185-207. 被引量:1
  • 2XIA Yang,HU Ruiming, HUANG Zhenkun, et al. A novel method for generation of motion saliencyFC~// 17th IEEE International Conference on Image Process- ing. Hong Kong : IEEE, 2010 : 4685-4688. 被引量:1
  • 3KIM W,JUNG C,KIM C. Spatiotemporal saliency de- tection and its applications in static and dynamic scenes [J~. IEEE Transactions on Circuits and Systems for Video Technology, 2011,21 (4) : 446-456. 被引量:1
  • 4MAHAPATRA D, GILANI S, SAINI M. Coherency based spatio-temporal saliency detection for video ob- ject segmentation[J~. IEEE Journal of Selected Topics in Signal Processing, 2013,8(3):454 - 462. 被引量:1
  • 5KIM W,KIM C. Spatiotemporal saliency detection u sing textural contrast and its applications [J~. IEEE Transactions on Circuits and Systems for Video Tech- nology, 2014,24(4) :646-659. 被引量:1
  • 6ZHU Yaping,JACOBSON N, PAN Hong, et al. Mo- tion-decision based spatiotemporal saliency for video sequences[C~//2011 IEEE International Conference on Acoustics, Speech and Signal Processing. Prague: IEEE, 2011:1333-1336. 被引量:1
  • 7OAKES M, ABHAYARATNE C. Visual saliency esti mation for video[C~//13th International Workshop on Image Analysis for Multimedia Interactive Services. Dublin : IEEE, 2012 : 1-4. 被引量:1
  • 8XIA Yang,HU Ruimin, WANG Zhongyuan. Salient map extraction based on motion history map[C~//4th International Congress on Image and Signal Processing. Shanghai:IEEE, 2011: 427-430. 被引量:1
  • 9HADIZADEH H,BAJIC I V. Saliency-aware video compression[J~. IEEE Transactions on Image Process- ing, 2014,.23(1): 19-33. 被引量:1
  • 10FANG Yuming, LIN Weisi, CHEN Zhenzhong, et al. A video saliency detection model in compressed domain [J~. IEEE Transactions on Circuits and Systems for Video Technology, 2014,24(1) :27-38. 被引量:1

二级参考文献12

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部