期刊文献+

固体氧化物燃料电池系统仿真分析与控制

Simulation analysis and control of solid oxide fuel cell system
下载PDF
导出
摘要 固体氧化物燃料电池(SOFC)系统是一个非线性、多变量和强耦合的系统,很难用传统的建模方法来建立。本文基于BP神经网络的方法,利用MATLAB/Simulink平台构建SOFC系统模型,并在该模型的基础上增加PID控制,实现了闭环控制系统的分析。实验结果表明,该模型预测精度高,由预测模型得出的温度数据与实际数据的绝对误差为0.011%,增加的PID控制算法具有很强的抗干扰能力。 Solid oxide fuel cell (SOFC) system is a nonlinear, multivariable and strong coupling system, so its model is very difficult to be constructed with traditional modeling method. We establish a SOFC system model with BP neural network and MATLAB/Simulink platform. We further increase PID control based on the model and closed loop control system analysis. Experimental results show that the model has high prediction accuracy, and the relative error between temperature data from the model and actual data is 0. 011%. The increased PID control algorithm has stronger anti- interference capability.
出处 《山东科学》 CAS 2016年第1期1-6,共6页 Shandong Science
基金 山东省重大科技专项(2015ZDXX0602A02)
关键词 固体氧化物燃料电池 热管理 BP神经网络 PID控制 solid oxide fuel cell thermal management BP neural network PID control
  • 相关文献

参考文献12

  • 1肖国林,陈虹,段宗武.燃料电池技术在潜艇和海洋工程中的应用前景探讨[J].舰船科学技术,2009,31(12):102-104. 被引量:7
  • 2SHIH N C, WENG B J, LEE J Y, et al. Development of a 20 kW generic hybrid fuel cell power system for small underwater vehicles [J]. International Journal of Hydrogen Energy, 2014, 39 (25) : 13894 - 13901. 被引量:1
  • 3XIE Y Y, DING H P, XUE X J. Multi-physicochemical modeling of direct methane fueled solid oxide fuel cells [J]. Journal of Power Sources, 2013, 241:718-727. 被引量:1
  • 4蔡年生.UUV动力电池现状及发展趋势[J].鱼雷技术,2010,18(2):81-87. 被引量:17
  • 5蒋建华..平板式固体氧化物燃料电池系统的动态建模与控制[D].华中科技大学,2013:
  • 6李曦,付晓薇,曹广益,苗青.基于模糊辨识的燃料电池建模[J].武汉科技大学学报,2004,27(3):260-263. 被引量:2
  • 7ZHANG L, LI X, JIANG J H, et al. Dynamic modeling and analysis of a 5-kW solid oxide fuel cell system from the perspectives of cooperative control of thermal safety and high efficiency [J]. International Journal of Hydrogen Energy, 2015, 40 (1) : 456 - 476. 被引量:1
  • 8曹红亮..固体氧化物燃料电池发电系统动态建模与控制[D].华中科技大学,2012:
  • 9BARELLI L, BIDINI G, GALLORINI F, et al. Design optimization of a SOFC-based CHP system through dynamic analysis [J]. International Journal of Hydrogen Energy, 2013, 38( 1 ). 354-369. 被引量:1
  • 10GEORGIS D, JOGWAR S S , ALMANSOORI A S, et al. Design and control of energy integrated SOFC systems for in situ hydrogen production and power generation [J]. Computers& Chemical Engineering, 2011, 35 (9) : 1691 - 1704. 被引量:1

二级参考文献37

  • 1许韦韦,孟昭香.新兴的水下作战平台UUV[J].指挥控制与仿真,2006,28(3):16-19. 被引量:22
  • 2Wasmus S, Kuver A. Methanol Oxidation and Direct Methanol Fuel Cells: A Selective Review [J]. J Electroanal Chem , 1999,461(122)14 -31. 被引量:1
  • 3Vincenzo A. Direct Methanol Fuel Cells for Mobile Applications: A Strategy for the Future [J]. Full Cells Bulletin, 1999,2(7)6 -8. 被引量:1
  • 4Dohle H, Divisek J,Jung R. Process Engineering of the Direct Methanol Fuel Cell [J]. Power Sources, 2000,(86)469-477. 被引量:1
  • 5Wand Z H, Wang C Y. Mathematical Modeling of Liquid feed Direct Methanol Fuel Cells [A]. Proceedings of the 199th ECS[C],2001. 被引量:1
  • 6Scott K, Tamma W,M Cruickshank. Performance and Modeling of a Direct Methanol Fuel Cell System's [J]. Power Sources, 1997,(65)159-171. 被引量:1
  • 7Tomohiro Takagi, Michio Sugeno.Fuzzy Identification of Systems and Its Application to Modeling and Control[J]. IEEE Transactions of Systems, Man and Cybernetics, 1985,15(1)116-132. 被引量:1
  • 8Fu Lai Chung, Tong Lee.Fuzzy Competitive Learning[J]. Neural Networks, 1994,7(3)539-551. 被引量:1
  • 9Liu B Shen, Q Su H Y, Chu J. A Nonlinear Predictive Control Algorithm Based on Fuzzy Online Modeling and Discrete Optimization [A]. 2003 IEEE International Conference on Systems[C]. Man & Cybernetics,Washington D C, USA,2003. 被引量:1
  • 10Lakeman J B,Browning D J. The role of fuel cells in the supply of silent power for operations in littoral waters[ R]. RTO-MP - 104,47 - 1 -47 - 18. 被引量:1

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部