期刊文献+

一种基于Hadoop的数据展示研究 被引量:2

Research on Data Display based on Hadoop
下载PDF
导出
摘要 大数据时代已经到来,体现出数据量大、类型繁多、价值密度低、速度快和时效高等特点。数据由简单的使用对象开始转变为一种基础性资源,而大数据的规模效应给数据库存储数据和数据分析带来了很大挑战,更好地从数量级很多的数据中得到所需数据并展示已经成为关注焦点。顺应数据管理方式的变革,首先对大数据的基本概念进行剖析,在此基础上模拟了一个二手车大数据文本作为初始数据,然后把大数据数据仓库框架与数据库分表相结合,从而找出所需要的精细数据,最后利用了前端框架把得到的数据展示出来,让大数据能够真正应用于人们的生活中。 Big data era has arrived,the data volume is big,the type is various,the value density is low and the speed of the time is high.The data is transformed into a basic resource,and the scale effect of big data has brought a great challenge to the database storage data and data analysis.How to get the data you want from a number of data and display it has become a common concern.The data management mode of the reform is brewing and occurred,the basic concept of large data is analyzed,and the simulation is dove based on a second-hand car big data text taken as the initial data,then the big data warehouse framework and database table are connected to find out the required data.Finally,use the front frame to get the data show,so that the big data can really be applied to the people life.
出处 《新技术新工艺》 2016年第1期83-85,共3页 New Technology & New Process
关键词 大数据 数据仓库 数据展示 big data data warehouse data display
  • 相关文献

参考文献8

二级参考文献71

  • 1Big data. Nature, 2008, 455(7209): 1-136. 被引量:1
  • 2Dealing with data. Science,2011,331(6018): 639-806. 被引量:1
  • 3Holland J. Emergence: From Chaos to Order. RedwoodCity,California: Addison-Wesley? 1997. 被引量:1
  • 4Anthony J G Hey. The Fourth Paradigm: Data-intensiveScientific Discovery. Microsoft Research, 2009. 被引量:1
  • 5Phan X H, Nguyen L M,Horiguchi S. Learning to classifyshort and sparse text Web with hidden topics from large-scale data collections//Proceedings of the 17th InternationalConference on World Wide Web. Beijing, China,2008:91-100. 被引量:1
  • 6Sahami M, Heilman T D. A web-based kernel function formeasuring the similarity of short text snippets//Proceedingsof the 15th International Conference on World Wide Web.Edinburgh, Scotland, 2006: 377-386. 被引量:1
  • 7Efron M, Organisciak P,Fenlon K. Improving retrieval ofshort texts through document expansion//Proceedings of the35th International ACM SIGIR Conference on Research andDevelopment in Information Retrieval. Portland, OR, USA,2012: 911-920. 被引量:1
  • 8Hong L,Ahmed A, Gurumurthy S,Smola A J, Tsioutsiou-liklis K. Discovering geographical topics in the twitterstream//Proceedings of the 21st International Conference onWorld Wide Web(WWW 2012). Lyon, France, 2012:769-778. 被引量:1
  • 9Pozdnoukhov A,Kaiser C. Space-time dynamics of topics instreaming text//Proceedings of the 3rd ACM SIGSPATIALInternational Workshop on Location-Based Social Networks.Chicago-IL,USA, 2011: 1-8. 被引量:1
  • 10Sun Yizhou,Norick Brandon, Han Jiawei, Yan Xifeng, YuPhilip S,Yu Xiao. Integrating meta-path selection with user-guided object clustering in heterogeneous information net-works/ /Proceedings of the 18th ACM SIGKDD InternationalConference on Knowledge Discovery and Data Mining.Beijing, China, 2012: 1348-1356. 被引量:1

共引文献762

同被引文献12

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部