期刊文献+

辅助变量纯方位目标跟踪算法 被引量:9

Modified instrumental variable method for bearings-only target tracking
下载PDF
导出
摘要 为克服伪线性估计方法在纯方位目标跟踪中估计参数的有偏性,提出了一种改进的辅助变量算法.该算法通过曲线拟合前几个时刻的方位角测量序列来获得当前时刻目标方位角的估计值,并将此作为辅助变量,通过最小二乘方法对目标参数进行估计,理论上可以获得目标参数的无偏估计.针对单、双观测站两种不同情况,推导出了系统观测模型,并给出了具体实现步骤.仿真实验的结果表明,与已有的研究相比,该算法具有更快的收敛速度和更高的估计精度,在工程实践中具有广泛的应用. To overcome the biased estimation of the pseudo-linear algorithm in bearings-only target tracking,a modified instrumental variable algorithm is proposed.In the new algorithm,the current bearings-only estimation angle is acquired by polyfitting several previous bearings angles.Then the estimated angle is used as the instrumental variable to get the motion parameters by applying the leastsquare method.The algorithm can achieve the theoretical unbiased estimation.Simulation results illustrate that the new modified instrumental variable algorithm has a better convergence rate and estimation accuracy than the existing research and that it is more suitable for engineering practice.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2016年第1期167-172,共6页 Journal of Xidian University
基金 国家自然科学基金资助项目(51409214 51179157 61461007)
关键词 目标跟踪 伪线性估计 辅助变量 控制理论 target tracking pseudo-linear estimation instrumental variable control theory
  • 相关文献

参考文献10

二级参考文献49

  • 1李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报,2007,34(2):233-238. 被引量:60
  • 2董志荣.舰艇指控系统的理论基础[M].北京:国防工业出版社,1995.. 被引量:37
  • 3Gordon N J,Salmond D J,Smith A F M.Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation[J].IEE Proceedings on Radar and Signal Processing,1993,140(2):107-113. 被引量:1
  • 4Arulampalam M S,Maskell S,Gordon N,et al.A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking[J].IEEE Trans on Signal Processing,2002(50):174-188. 被引量:1
  • 5Haupt G T,Kasdin J.Optimal Recursive Iterative Algorithmfor Discrete Nonlinear Least-squares Estimation[J].Journal of Guidance,Control,and Dynamics,1996,19(3):643-649. 被引量:1
  • 6Pulford G W.Taxonomy of Multiple Target Tracking Methods[J].IEE Proceedings Radar,Sonar and Navigation,2005,152(5):291-304. 被引量:1
  • 7Mahler R.A Theoretical Foundation for the Stein-Winter Probability Hypothesis Density (PHD) Multi-target Tracking Approach[ED/OL].[2009-03-03].http://www.dtic.mil/cgi-bin/GetTRDoc?Locution=U2&doc=GetTRDoc.pdf&AD=ADA400161. 被引量:1
  • 8Mahler R P S.Multitarget Bayes Filtering Via First-order Multitarget Moments[J].IEEE Trans on Aerospace and Electronic Systems,2003,39(4):1152-1178. 被引量:1
  • 9Sidenbladh H.Multi-target Particle Filtering for the Probability Hypothesis Density[C]//IEEE Proceedings of the Sixth International Conference of Information Fusion:Vol 2.Cairns:IEEE,2003:800-806. 被引量:1
  • 10Vo B N,Pasha A,Tuan H D.A Gaussian Mixture PHD Filter for Nonlinear Jump Markov Models[C]//Proceedings of the 45th IEEE Conference on Decision & Control.San Diego:IEEE.2006:3162-3167. 被引量:1

共引文献19

同被引文献55

引证文献9

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部