期刊文献+

采用自适应字典学习的InSAR降噪方法

InSAR noise reduction using adaptive dictionary learning
下载PDF
导出
摘要 提出了一种基于字典学习的干涉合成孔径雷达相位降噪算法.首先利用字典学习,建立了干涉相位滤波的优化模型.鉴于该模型非凸难以求解,采用分裂技术和增广拉格朗日框架,获得松弛后的基于l1范数正则化的优化模型,然后引入交替方向乘子法对松弛后的问题求解,获得最终的相位滤波结果.通过InSAR复相位数据训练字典,从稀疏表达式重建所需的复相位图像.对仿真数据和实测数据的处理显示这种新的InSAR相位降噪方法在残点数、均方误差和边缘完整性保持方面优于现有的经典滤波方法. We consider the phase noise filtering problem for interferometric synthetic aperture radar(InSAR)based on the dictionary learning technique.Due to the non-convexity of the optimization problem is difficult to solve.By using the splitting technique and employing the augmented Lagrangian framework,we obtain a relaxed nonlinear constraint optimization problem with l_1-norm regularization which can be solved efficiently by the alternating direction method of multipliers(ADMM).Specifically,we firstly train dictionaries from the InSAR complex phase data,and then reconstruct the desired complex phase image from the sparse representation.Simulation results based on simulated and measured data show that this new InSAR phase noise reduction method has a much better performance than several classical phase filtering methods in terms of residual count,mean square error(MSE)and preservation of the fringe completeness.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2016年第1期18-23,共6页 Journal of Xidian University
基金 国家自然科学基金资助项目(61362001 51165033)
关键词 INSAR 相位降噪 字典学习 l1范数正则化 交替方向乘子法 interferometric synthetic aperture radar phase noise reduction dictionary learning l1-norm regularization alternating directional method of multipliers
  • 相关文献

参考文献16

  • 1SUKSMONO A B, HIROSE A. Interferometric SAR Image Restoration Using Monte Carlo Metropolis Method [J]. IEEE Transactions on Signal Processing, 2002, 50(2) : 290-298. 被引量:1
  • 2郭交,李真芳,刘艳阳,保铮.一种InSAR干涉相位图的自适应滤波算法[J].西安电子科技大学学报,2011,38(4):77-81. 被引量:7
  • 3LEE J S, PAPATHANASSIOU K P, AINSWORTH T L, et al. A New Technique for Noise Filtering of SAR Interferogram Phase Images [J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5) : 1456-1465. 被引量:1
  • 4GOLDSTEIN R M, WERNER C L. Radar Interferogram Filtering for Geophysical Applications [J]. Geophysical Reservation Letters, 1998, 25(21): 4035-4038. 被引量:1
  • 5易辉伟,朱建军,陈建群,齐艳妮,李佳.一种改进的InSAR干涉图复数空间自适应滤波[J].中南大学学报(自然科学版),2013,44(2):632-641. 被引量:5
  • 6李锦伟,李真芳,刘艳阳,保铮.一种相干系数加权的最优干涉相位滤波[J].西安电子科技大学学报,2014,41(2):25-31. 被引量:3
  • 7AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: an Algorithm for Designing Overeomplete Dictionaries for Sparse Representation [J]. IEEE Transactions on Signal Processing, 2006, 54(11) : 4311-4322. 被引量:1
  • 8RAZAVIYAYN M, TSENG H W, LUO Z Q. Dictionary Learning for Sparse Representation: Complexity and Algorithm [C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2014: 5247-5251. 被引量:1
  • 9YU G S, SAPIRO G, MALLAT S. Image Modeling and Enhancement via Structured Sparse Model Selection [C]// Proceedings of the IEEE Conference on Image Processing. Piscataway: IEEE Computer Society, 2010: 1641-1644. 被引量:1
  • 10KERVRANN C, BOULANGER ]. Local Adaptively to Variable Smoothness for Examplar-based Image Regularization and Representation [J]. International Journal of Computer Vision, 2008, 79(1) : 45-69. 被引量:1

二级参考文献31

  • 1Nan W, Feng Dazheng, Li Junxia. A Locally Adaptive Filter of Interferometric Phase Images[ J]. IEEE Trans on GRSL, 2006, 3( 1): 73-77. 被引量:1
  • 2Bin C, Diannong L, Zhen D. A New Adaptive Muhiresolution Noise-filtering Approach for SAR Interferometric Phase Images [J]. IEEE Trans on GRSL, 2008, 5(2) : 266-270. 被引量:1
  • 3Vasile G, Ovarlez J P, Pascal F, et al. Coherency Matrix Estimation of Heterogeneous Clutter in High-resolution Polarimetric SAR Images[J]. IEEE Trans on GRS, 2010, 48(4): 1809-1826. 被引量:1
  • 4Vasile G, Trouve E, Lee J S. Intensity-driven Adaptive-neighborhood Technique for Polarimetric and Intefferometric SAR Parameters Estlmatlon[J]. IEEE Trans on GRS, 2006, 44(6): 1609-1621. 被引量:1
  • 5Xu W, Cumming I. A Region-growing Algorithm for InSAR Phase Unwrapping[J]. IEEE Trans on GRS, 1999, 37( 1): 124- 134. 被引量:1
  • 6Just D, Bamler R. Phase Statistics of Interferograms with Applications to Synthetic Aperture Radar[ J]. Appl Opt, 1994, 33 (20) : 4361-4368. 被引量:1
  • 7Rosen P A, Hensley S, Joughin I R, et al. Synthetic Aperture Radar Interferometry[ J]. Proe of the IEEE, 2000, 88(3): 333- 382. 被引量:1
  • 8Costantini M. A Novel Phase Unwrapping Method Based on Network Programming[ J]. IEEE Trans on GRS, 1998, 36(3) : 813- 821. 被引量:1
  • 9Lee J S, Papathanassiou K P, Ainsworth T L, et al. A New Technique for Noise Filtering of SAR Interferometric Phase Images [J]. IEEE Trans on GRS, 1998, 36(5) : 1456-1465. 被引量:1
  • 10Ferretti A,Andrea M G,Prati C,et al.InSAR Principles:Guidelines for SAR Interferometry Processing and Interpretation[M].Netherlands:European Space Agency,2007. 被引量:1

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部