期刊文献+

黑河上游植被总初级生产力遥感估算及其对气候变化的响应 被引量:27

Remote sensing estimation of gross primary productivity and its response to climate change in the upstream of Heihe River Basin
原文传递
导出
摘要 定量描述植被总初级生产力(GPP)对于全球碳循环和全球气候变化研究具有重要意义。针对MODIS MOD_17 GPP(MOD_17)产品在通量站点低估的现象,通过3个实验依次改进了模型输入参数(气象数据和吸收的光合有效辐射吸收比例(f PAR))和模型本身的参数(最大光能利用率),分析了各个参数对模拟结果的不确定性影响,结果表明各参数对模拟结果都有不同程度的影响。在阿柔草地站,最大光能利用率的重新标定对结果影响最大,GPP估算结果的提高最为明显;在关滩森林站利用广义神经网络算法得到的GLASS f PAR代替原始MODIS f PAR产品,比其他参数的改进效果更明显,GPP的值更接近涡动通量观测值。利用改进的MOD_17模型重新估算了黑河上游2001–2012年间植被GPP,通过趋势分析得出该研究时段内GPP以9.58 g C·m^(–2)·a^(–1)的平均速率呈上升趋势。同时计算了气候因子(温度、降水和饱和水汽压差(VPD))与时间序列GPP的偏相关性,分析了植被GPP对气候变化的响应情况,2001–2012年平均温度和VPD与年GPP大部分区域呈正相关,体现了温度和VPD对植被生长的促进作用;2001–2012年的降水量与年GPP无明显相关,且大部分区域呈负相关。 Aims Quantifying the gross primary productivity(GPP) of vegetation is of primary interest in studies of global carbon cycle. This study aims to optimize the MODIS GPP model for specific environments of a fragile waterhead ecosystem, by performing simulations of long-term(from 2001 to 2012) GPP with optimized MOD17 model, and to analyze the response of GPP to the local climatic variations. Methods The original MODIS GPP products that underestimate GPP were validated against two years(2010^–2011) of eddy covariance(EC) data at two sites(i.e. an alpine pasture site and a forest site, respectively) in the upstream of Heihe River Basin. Three comparative experiments were then conducted to analyze the effects of input parameters derived from three sources(i.e. meteorological, biome-specific, and fraction of absorbed photosynthetically active radiation(f PAR) parameters) on the model behavior. After refining the model-driven parameters, long-term GPPs of the study area were estimated using the optimized MOD17 model, and the Least Absolute Deviation method was applied to analyze the partial correlations between interannual GPPs and climatic variables(temperature, precipitation and vapor pressure deficit(VPD)). Important findings The uncertainties in the original MODIS GPP products are attributable to biome-specific parameters, input data(e.g. meteorological and radiometry data) and vegetation maps. At the pasture site, the light use efficiency had the strongest impact on the GPP simulations. The refined f PAR calculated from the leaf area index(LAI) products of Global Land Surface Satellite(GLASS) greatly improved the GPP estimates, especially at the forest site. The GPPs from the optimized MOD17 model well matched the EC data(R2 = 0.90, root mean squared error(RMSE) = 1.114 g C·m^–2·d^–1 at the alpine pasture site; R2 = 0.91, RMSE = 0.649 g C·m^–2·d^–1 at theforest site). The time series of GPPs displayed an up trend at an average rate of 9.58 g C·m^
出处 《植物生态学报》 CAS CSCD 北大核心 2016年第1期1-12,共12页 Chinese Journal of Plant Ecology
基金 国家重点基础研究发展计划"973计划"(2013CB733404) 中央级公益性科研院所基金(IFRIT201302)
关键词 植被总初级生产力 MOD_17模型 趋势分析 气候因子 偏相关分析 gross primary productivity MOD_17 model trend analysis climatic factors partial correlation analysis
  • 相关文献

参考文献31

  • 1Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, R6denbeck C, Arain MA, Baldocchi D, Bonan GB, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson KW, Roupsard O, Veenendaal E, Viovy N, Williams C, Lan Woodward F, Papale D (2010). Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science, 329, 834-838. 被引量:1
  • 2Birkes D, Dodge Y (1993). Alternative Methods of Regression. John Wiley & Sons, New York. 228. 被引量:1
  • 3陈正华,麻清源,王建,祁元,李净,黄春林,马明国,杨国靖.利用CASA模型估算黑河流域净第一性生产力[J].自然资源学报,2008,23(2):263-273. 被引量:46
  • 4Coops NC, Black TA, Jassal RS, Trofymow JA, Morgenstem K (2007). Comparison of MODIS, eddy covariance deter- mined and physiologically modelled gross primary pro- duction (GPP) in a Douglas-fir forest stand. Remote Sens- ing of Environment, 107, 385-401. 被引量:1
  • 5Coops NC, Ferster C J, Waring RH, Nightingale J (2009). Comparison of three models for predicting gross primary production across and within forested ecoregions in the contiguous United States. Remote Sensing of Environment, 113,680-690. 被引量:1
  • 6Dai ZH, Birdsey RA, Johnson KD, Dupuy JM, Hernandez- Stefanoni JL, Richardson K (2014). Modeling carbon stocks in a secondary tropical dry forest in the Yucatan Peninsula, Mexico. Water, Air, & Soil Pollution, 225, 1925. 被引量:1
  • 7Desai AR, Richardson AD, Moffat AM, Kattge J, Hollinger DY, Ban- A, Falge E, Noormets A, Papale D, Reichstein M, Stauch VJ (2008). Cross-site evaluation of eddy co- variance GPP and RE decomposition techniques. Agricul- tural and Forest Meteorology, 148, 821-838. 被引量:1
  • 8Dury M, Hambuckers A, Warnant P, Henrot A, Favre E, Ouberdous M, Francois L (2011). Responses of European forest ecosystems to 21st century climate: Assessing changes in interannual variability and fire intensity. For- est-Biogeosciences and Forestry, 4, 82-99. 被引量:1
  • 9郭云,李增元,陈尔学,田昕,凌飞龙.甘肃黑河流域上游森林地上生物量的多光谱遥感估测[J].林业科学,2015,51(1):140-149. 被引量:17
  • 10Heinsch FA, Reeves M, Votava P, Kang SY, Milesi C, Zhao MS, Glassy J, Jolly WM, Loehman R, Bowker CF, Kim- ball JS, Nemani RR, Running SW (2003). GPP and NPP (MODI 7A2/A3) Products, NASA MODIS Land Algorithm. MODI 7 User's Guide, 1-57. http://research.eeescience. utoledo.edu/lees/papers_pdf/MOD 17UsersGuide.pdf. Cited: 2003-12-02. 被引量:1

二级参考文献108

共引文献343

同被引文献417

引证文献27

二级引证文献173

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部