期刊文献+

ZnO纳米管薄膜的制备及其光催化特性 被引量:2

Preparation and Photocatalysis Characteristics of ZnO Nanotube Films
下载PDF
导出
摘要 用简单的水热法,在ZnO种晶层修饰的玻璃基底上生长取向性较好的ZnO纳米棒阵列,之后通过质量分数较低的氨水侵蚀获得了ZnO纳米管。采用X射线衍射仪(XRD)、场发射扫描电子显微镜(FESEM)及光致发光光谱仪(PL)对产物的结构、形貌以及光学特性进行表征。结果表明,ZnO纳米管为沿c轴方向择优生长的六方晶型纤锌矿结构,外直径约为500 nm,管壁厚度约为40 nm,而且缺陷发光峰的强度明显高于本征紫外发光峰。此外,在100 W的紫外汞灯照射下对ZnO纳米管阵列的一阶光催化速率常数特性进行了研究,发现随着ZnO纳米管薄膜用量的不断增大,光催化速率常数也随之增大,两者呈正比例关系。 Highly oriented ZnO nanorod arrays were prepared via a simple hydrothermal process on the glass substrate decorated by ZnO seed layer,and then the ZnO nanotubes were obtained by chemically etching the ZnO nanorods in the ammonium hydroxide solution with low mass fraction.The structure,morphology and optical property of the as-prepared products were characterized by the X-ray diffractometer(XRD),field emission scanning electron microscopy(FESEM)and photoluminescence(PL)spectroscopy,respectively.The results show that the ZnO nanotubes are of hexagonal wurtzite structure and grow preferentially along the c-axis direction.The outer diameter and wall thickness of the ZnO nanotubes are about 500 nm and40 nm,respectively.The emission intensity of the defect peak revealed by the PL spectrum was much higher than that of the ultraviolet intrinsic luminescent peak.Furthermore,the first-order photocatalytic rate constant property of the ZnO nanotube arrays under the illumination of a 100 W ultraviolet highpressure mercury lamp was investigated.It is found that the photocatalytic rate constant increases linearly with the increase of the dosage of the ZnO nanotube film,i.e.the photocatalytic rate constant is proportional to the dosage of the ZnO nanotube film.
出处 《微纳电子技术》 北大核心 2016年第2期124-128,134,共6页 Micronanoelectronic Technology
基金 国家自然科学基金资助项目(11304025 11574036)
关键词 ZNO 纳米管 酸碱腐蚀法 光致发光 光催化 ZnO nanotube acid-alkali etching method photoluminescence photocatalysis
  • 相关文献

参考文献26

  • 1XIE J,WANG H,DUAN M,et al.Synthesis and photocatalysis properties of ZnO structures with different morphologies via hydrothermal method[J].Applied Surface Science,2011,257(15):6358-6363. 被引量:1
  • 2WANG Y X,LI X Y,WANG N,et al.Controllable synthesis of ZnO nanoflowers and their morphology-dependent photocatalytic activities[J].Separation and Purification Technology,2008,62(3):727-732. 被引量:1
  • 3ZHOU Y,LIU C,LI M Y,et al.Fabrication and optical properties of ordered sea urchin-like ZnO nanostructures by a simple hydrothermal process[J].Materials Letters,2013,106(9):94-96. 被引量:1
  • 4陈加希,等.四针状氧化锌晶须生长机理及生长过程研究[J].中国稀土学报,2010,28(1):321. 被引量:2
  • 5ZHANG Q X,BAI W.Synthesis and growth mechanism of macroscopic ZnO nanocombs and nanobelts[J].Vacuum,2011,86(4):398-402. 被引量:1
  • 6DUAN H F,HE H P,SUN L W,et al.Indium-doped ZnO nanowires with infrequent growth orientation,rough surfaces and low-density surface traps[J].Nanoscale Research Letters,2013,8(1):493-501. 被引量:1
  • 7LIU Z F,LEI E,JING Y,et al.Growth of ZnO nanorods by aqueous solution method with electrodeposited ZnO seed layers[J].Applied Surface Science,2009,255(12):6415-6420. 被引量:1
  • 8WANG H Q,WANG G Z,JIA L C,et al.Polychromatic visible photoluminescencein porous ZnO nanotubes[J].Journal of Physics:D,2007,40(21):6549-6553. 被引量:1
  • 9XU C J,KIM B S,LEE J H,et al.Seed-free electrochemical growth of ZnO nanotube arrays on single-layer graphene[J].Materials Letters,2012,72:25-28. 被引量:1
  • 10YUE S,YAN Z S,SHI Y F,et al.Synthesis of zinc oxide nanotubes within ultrathin anodic aluminum oxide membrane by sol-gel method[J].Materials Letters,2013,98(5):246-249. 被引量:1

二级参考文献34

  • 1李桂英,安太成,陈嘉鑫,陈繁忠,傅家谟,盛国英,叶恒鹏.光电催化氧化处理高含氯采油废水的研究[J].环境科学研究,2006,19(1):30-34. 被引量:42
  • 2RONAJD M.Bioremediation of petroleum biodegradation[J].Bio Sci,1995,45(5):332-338. 被引量:1
  • 3SHEN L,JAFFEL R.Interactions between dissolved petroleum hydrocarbons and pure and humic acid-coated mineral surfaces in artificial seawater[J].Marine Environmental Research,2000,49:217-231. 被引量:1
  • 4BESSA E,SANTANNA G L,DEZOTTI M.Photocatalytic/H2O2treatment of oil field produced waters[J].Appl Catal B,2001,29(2):125-134. 被引量:1
  • 5QAMAR M,SAQUIB M,MUNEER M.Photocatalytic degradation of two selected dye derivatives,chromotrope 2B and amido black IOB,in aqueous suspensions of titanium dioxide[J].Dyes Pigments,2005,65(1).1-9. 被引量:1
  • 6SHANKAR M V,CHERALATHAN K K,ARABINDOO B,et al.Enhanced photocatalytic activity for the destruction of monocrotophos pesticide by TiO(2)/Hβ[J].J Mol Catal A,2004,223(1/2):195-200. 被引量:1
  • 7IZUTSU H,NAIR P K,MAEDA K,et al.Structure and properties of TiO(2)SiO(2)prepared by sol-gel method in the presence of tartaric acid[J].Materials Research Bulletin,1997,32(9):1303-1311. 被引量:1
  • 8WEI T Y,WAN C C.Heterogeneous photocatalytic oxidation of phenol with titanium dioxide powders[J].Ind Eng Chem Res,1991,30(6):1293-1300. 被引量:1
  • 9SAUER T,CESEONETO NETO G,JOSE H J,et al.Kinetics of photeoatalytic degradation of reactive dyes in a TiO2 slurry reactor[J].J Photochem Photobio A,2002,149(1/3):147-154. 被引量:1
  • 10CHAKRABARTI S,DUTTA B K.Photocatalytic degradation of model texile dyes in wastewater using ZnO as semiconductor catalyst[J].J Hazardous Mater B,2004,112(3):269 -278. 被引量:1

共引文献44

同被引文献23

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部