期刊文献+

A priori estimates and blow-up behavior for solutions of-QNu- Veu in bounded domain in R^N 被引量:2

A priori estimates and blow-up behavior for solutions of-Q_(N^u)= Ve^u in bounded domain in R^N
原文传递
导出
摘要 Let Q_N be an N-anisotropic Laplacian operator, which contains the ordinary Laplacian operator,N-Laplacian operator and the anisotropic Laplacian operator. We firstly obtain the properties of Q_N, which contain the weak maximal principle, the comparison principle and the mean value property. Then a priori estimates and blow-up analysis for solutions of-Q_(N^u) = Ve^u in bounded domain in R^N, N≥2 are established.Finally, the blow-up behavior of the only singular point is also considered. Let Q_N be an N-anisotropic Laplacian operator, which contains the ordinary Laplacian operator,N-Laplacian operator and the anisotropic Laplacian operator. We firstly obtain the properties of Q_N, which contain the weak maximal principle, the comparison principle and the mean value property. Then a priori estimates and blow-up analysis for solutions of-Q_(N^u) = Ve^u in bounded domain in R^N, N≥2 are established.Finally, the blow-up behavior of the only singular point is also considered.
出处 《Science China Mathematics》 SCIE CSCD 2016年第3期479-492,共14页 中国科学:数学(英文版)
基金 Excellent Young Talent Foundation of Anhui Province (Grant No. 2013SQRL080ZD)
关键词 blow-up behavior N-anisotropic Laplacian N-anisotropic Liouville equation 先验估计 Blow-up Laplacian算子 有界域 laplacian算子 学校 均值性质 弱极值原理
  • 相关文献

参考文献29

  • 1Alvino A, Ferone V, Trombetti C, et al. Convex symmetrization and applications. Ann Inst H Poincar~ Anal Non Lin@aire, 1997, 14:275-293. 被引量:1
  • 2Bartolucci D, Tarantello G. Liouville type equations with singular data and their applications to periodic muttivortices for the electroweak theory. Comm Math Phys, 2002, 229:3 47. 被引量:1
  • 3Bellettini G, Paolini M. Anisotropic motion by mean curvature in the context of Finsler geometry. Hokkaido Math J, 1996, 25:537-566. 被引量:1
  • 4Belloni M, Ferone V, Kawohl B. Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators. Z Angew Math Phys, 2003, 54:771-783. 被引量:1
  • 5Brezis H, Merle F. Uniform estimates and blow-up behavior for solutions of --An = V(x)e~ in two dimensions. CorrLm Partial Differential Equations, 1991, 16:1223-1253. 被引量:1
  • 6Chang S, Yang P. Prescribing Gaussian curvature on $2. Acta Math, 1987, 159:215-259. 被引量:1
  • 7Chen C, Lin C. Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces. Comm Pure Appl Math, 2002, 55:728-771. 被引量:1
  • 8Chen W, Li C. Prescribing Gaussian curvatures on surfaces with conical singularities. J Geom Anal, 1991, 4:359-372. 被引量:1
  • 9Ding W, Jost J, Li J, et al. The differential equation Au = 87r -- 87reu on a compact Riemann surface. Asian J Math, 1997, 1:230-248. 被引量:1
  • 10Ding W, Jost J, Li J, et al. Existence results for mean field equations. Ann Inst H Poincar@ Anal Non Lin@aire, 1999, 16:653-666. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部