期刊文献+

正相协下风险度量VaR样本分位数估计的渐近性质 被引量:2

THE ASYMPOTIC PROPERTIES OF THE SAMPLE QUANTILE ESTIMATOR OF VAR UNDER POSITIVE ASSOCIATED SAMPLES
下载PDF
导出
摘要 本文研究了正相协严平稳样本下,风险度量VaR样本分位数估计的问题.利用其指数不等式和协方差不等式,获得了风险度量VaR的样本分位数估计的相合性和渐近正态性,并给出Bahadur表示. In this paper,we consider the sample quantile estimator of VaR based on a stationary and positively associated sequence.For this setting,applying the exponential inequality of positively associated random variables,we prove the consistency and asympotic normality of the sample quantile estimator of VaR,and also give its Bahadur representation.
出处 《数学杂志》 CSCD 北大核心 2016年第1期183-190,共8页 Journal of Mathematics
基金 国家自然科学基金资助(11061029) 江西省教育厅科技项目基金资助(GJJ12604)
关键词 正相协样本 VAR风险度量 样本分位数 BAHADUR表示 positive association VaR quantile estimates Bahadur representation
  • 相关文献

参考文献11

  • 1Dowd K. Estimating VaR with order statistics[J]. J. Derivatives, 2001, 8(3): 23-30. 被引量:1
  • 2Koji Inui, Masaaki Kijima, Atsushi Kitano. VaR is subject to a significant positive bias[J]. Statist. Probab. Letters, 2005, 72: 299-31l. 被引量:1
  • 3谢佳利,杨善朝,梁鑫.VaR样本分位数估计的偏差改进[J].数量经济技术经济研究,2008,25(12):139-148. 被引量:6
  • 4Bahadur R R. A note on quantiles in large samples[J]. Ann. Math. Stat., 1966,37: 577-580. 被引量:1
  • 5杨善朝,陈敏.相协随机变量的指数不等式与强大数律[J].中国科学(A辑),2007,37(2):200-208. 被引量:2
  • 6Serfling R J. Approximation theorems of mathematical statistics[M]. New York: John Wiley and Sons, 1980. 被引量:1
  • 7Wang Xuejun, Hu Shuhe, Yang Wenzhi. The Bahadur representation for sample quantiles under strongly mixing sequence[J]. J. Statist. Plan. Infer., 2011, 141: 655-662. 被引量:1
  • 8Roussas G G. Asymptotic normality of a smooth estimate of a random field distribution function under association[J]. Statist. Probab. Letters, 1995, 24: 77-90. 被引量:1
  • 9Azevedo C M, Oliveira P E. On the kernel estimation of a multivariate distribution function under positive dependence[J]. 2011, URI: http://hdl.handle.net/1822/12218. 被引量:1
  • 10Li Yongming, Yang shanchao. Asymptotic normality of the empirical distribution under negatively associated sequencces and its applications[J]. J. Math. Res. Exp., 2006, 26(3): 457-464. 被引量:1

二级参考文献10

共引文献6

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部