期刊文献+

基于改进交互多模型概率数据关联的机动目标跟踪(英文) 被引量:7

Maneuvering target tracking in clutter background based on improved interacting multiple-model probabilistic data association algorithm
下载PDF
导出
摘要 为了提高杂波条件下的空中机动目标跟踪精度,提出了一个改进的交互多模型概率数据关联算法。该算法将交互多模型、去偏转换测量和概率数据关联算法相结合,利用交互多模型算法模型集合间不同模型的相互切换来估计跟踪目标的状态;利用去偏转换测量算法对转换测量误差进行去偏补偿,从而减小观测数据坐标变换引起的误差;利用概率数据关联算法处理数据关联和测量的不确定性。通过将本文的算法和基于扩展卡尔曼滤波的概率数据关联算法进行对比分析和验证,实验结果表明本文提出的算法可以提高机动目标的跟踪精度,且跟踪精度相对基于扩展卡尔曼滤波的概率数据关联算法减少26.38%的位置误差。 To improve the performance of tracking a maneuvering target in clutter, an improved interacting multiple model probability data association algorithm(IMMPDA-DCM) is proposed for airborne target tracking. Under the architecture of the proposed algorithm, an interacting multiple model(IMM) is used to deal with the model switching. The debiased converted measurement(DCM) filter is used to compensate the non-linearity in the dynamic system models and then reduce the observation error caused by coordinate transformation. The probability data association(PDA) handles the data association and measurement uncertainties in clutter background. Simulation results show that the proposed algorithm can improve the tracking precision of maneuvering target in clutters, and the position estimation error of IMMPDA-DCM is reduced by 26.38% compared with that of traditional IMMPDA-EKF algorithm.
出处 《中国惯性技术学报》 EI CSCD 北大核心 2015年第6期755-762,共8页 Journal of Chinese Inertial Technology
基金 国家自然科学基金(61473153,61301217) 江苏省自然科学基金(BK20131352) 江苏省"六大人才高峰"项目(2015-XXRJ-006) 高等学校博士学科点基金(20123219120043) 江苏高校优势学科建设工程资助项目(PAPD)
关键词 目标跟踪 概率数据关联 杂波 去偏转换测量 交互多模型 target tracking probabilistic data association clutter background debiased converted measurement interacting multiple model
  • 相关文献

参考文献16

  • 1Li X R, Jilkov V E A survey of maneuvering target tracking dynamic models[J]. IEEE Transactions on Aerospace and Electronics System, 2000, 39(4): 1333- 1364. 被引量:1
  • 2Mazor E, Averbuch A, Bar-shalom Y, Dayan J. Interacting multiple model in target tracking: A survey[J]. IEEE Transactions on Aerospace and Electronics Systems, 1998, 34(1): 103-124. 被引量:1
  • 3Bar-Shalom Y, Daum F, Huang J. The probabilistie data association filter estimation in the presence of measure- ment origin uncertainty[J]. IEEE Control System, 2009, 29(6): 82-100. 被引量:1
  • 4Habtemariam B, Tharmarasa R, Thayaparan T, Mallick M, Kirubarajan T A. Multiple-detection joint probabilistic data association filter[J]. IEEE Journal of Selected Topicsin Signal Processing, 2013, 7(3): 461-471. 被引量:1
  • 5吴盘龙,蔡亚东,王宝宝.仅测角卫星跟踪的扩展卡尔曼粒子滤波算法[J].红外与激光工程,2011,40(10):2008-2013. 被引量:11
  • 6Julier S J, Uhlmann J K, Durrant-Whyte H E A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Transac- tions on Automatic Control, 2000, 45(3): 477-482. 被引量:1
  • 7Zhao Z L, Li X R, Vesselin P J. Best linear unbiased filtering with nonlinear measurements for target tra- cking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(4): 1324-1336. 被引量:1
  • 8Musicki D, Suvorova S. Tracking in clutter using IMM-IPDA-based algorithms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 111-126. 被引量:1
  • 9Blackman S S. Multiple hypothesis tracking for multiple target tracking[J]. IEEE Transactions on Aerospace and Electronic System, 2004, 19(1): 5-18. 被引量:1
  • 10Jan S S, Kao Y C. Radar tracking with an interacting multiple model and probabilistic data association filter for civil aviation applications[J]. Sensors, 2013, 13(5): 6636- 6650. 被引量:1

二级参考文献7

共引文献10

同被引文献33

引证文献7

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部