期刊文献+

基于等效弹簧模型的裂纹Euler-Bernoulli梁弯曲变形分析 被引量:22

Bending Deformation Analysis of the Euler–Bernoulli Beam with Effect of Switching Crack Gap
下载PDF
导出
摘要 考虑裂纹的缝隙效应,研究了开闭裂纹Euler-Bernoulli梁的弯曲变形.首先,将裂纹等效为内部旋转弹簧,利用广义函数,给出了考虑裂纹缝隙影响的Euler-Bernoulli梁的等效抗弯刚度,推导了具有任意数目开闭裂纹梁弯曲变形的显式通解.在此基础上,研究了均布载荷作用下上侧单裂纹简支梁以及裂纹处承受集中力和集中力偶共同作用的固支梁的弯曲变形,分析了梁长细比、裂纹深度和位置以及载荷等对裂纹开闭状态和梁弯曲变形的影响。结果表明:梁挠度分布在裂纹处存在尖点,而转角分布存在跳跃;梁挠度与载荷的响应关系一般为双折线形式,分别对应于裂纹的张开和闭合状态;且裂纹张开时,裂纹梁的柔度随着梁长细比的增加和裂纹深度的减小而减小。这些结果对梁裂纹无损检测具有指导意义. Considering the effect of crack gap,the equivalent flexural rigidity of the Euler-Bernoulli beam with switching cracks was presented by generalized functions,and an explicit general solution for the bending deformation of the Euler-Bernoulli beam having an arbitrary number of switching cracks with the crack gap effect was derived. Based on the these results the bending deformation of a simply-supported beam subjected to a uniform load with a crack at its top surface,together with the clamped beam subjected to concentrated force and couple at its crack location were investigated. Then,the influences of the beam's slenderness ratio,crack's depth and location and load on the crack state and bending performances were analyzed. It was revealed that there exists,at the crack location,a cusp on the deflection curve and a jump on the rotational angle curve; the relationship between the beam's deflection and load is bilinear,corresponding to open and closed crack states,respectively; and when the crack is open,the flexibility of the cracked beam decreases with the increase of the beam's slenderness ratio and the decrease of the crack depth. These results are helpful in guiding non-destructive identification of crack on beam.
作者 孙嘉琳 杨骁
出处 《力学季刊》 CSCD 北大核心 2015年第4期703-712,共10页 Chinese Quarterly of Mechanics
关键词 EULER-BERNOULLI梁 开闭型裂纹 裂纹缝隙 广义函数 参数分析 Euler-Bernoulli beam switching crack crack gap generalized function parameter study
  • 相关文献

参考文献23

  • 1JASSIM Z A, ALI N N, MUSTAPHA F, et al. A review on the vibration analysis for a damage occurrence of a cantilever beam[J]. Engineering Failure Analysis, 2013, 31 (7):442-461. 被引量:1
  • 2BANAN M R, HJELMSTAD K D. Parameter estimation of structures from static response. I: computational aspects[J]. Journal of Structural Engineering, 1994, 120(11):3243-3258. 被引量:1
  • 3SUNG S H, KOO K Y, JUNG H J. Modal flexibility-based damage detection of cantilever beam-type structures using baseline modification[J]. Journal of Sound and Vibration, 2014, 333(18):4123-4138. 被引量:1
  • 4DIMAROGONS A. Vibration of cracked structures: a state of the art review[J]. Engineering Fracture Mechanics, 1996,55(5):831-857. 被引量:1
  • 5PALMERI A, CICIRELLO A. Physically-based Dirac's delta functions in the static analysis of multi-cracked Euler-Bernoulli and Timoshenko beams[J]. International Journal of Solids and Structures, 2011, 48(14- 15):2184-2195. 被引量:1
  • 6CHALLAMEL N, XIANG Y. On the influence of the unilateral damage behaviour in the stability of cracked beam columns[J]. Engineering Fracture Mechanics. 2010, 77(9):1467-1478. 被引量:1
  • 7PATEL T H, DARPE A K. Influence of crack breathing model on nonlinear dynamics of a cracked rotor[J]. Journal of Sound and Vibration, 2008, 311 (3-5):953-972. 被引量:1
  • 8Mousa Rezaee,Reza Hassannejad.FREE VIBRATION ANALYSIS OF SIMPLY SUPPORTED BEAM WITH BREATHING CRACK USING PERTURBATION METHOD[J].Acta Mechanica Solida Sinica,2010,23(5):459-470. 被引量:19
  • 9BUDA G, CADDEMI S. Identification of concentrated damages in Euler-Bernoulli beams under static loadsjf]. Journal of Engineering Mechanics, 2007, 133(8):942-956. 被引量:1
  • 10KRAJI N, SHAFIEI M, JALALPOUR M. Closed-form solutions for crack detection problem ofTimoshenko beams with various boundary conditions[J]. International Journal of Mechanical Sciences, 2009, 51(9- 10):667-681. 被引量:1

二级参考文献36

  • 1Dimarogonas A D. Vibration of cracked structure: a state of the art review[ J]. Engineering Fracture Mechanics, 1996, 55 (5) : 831-857. 被引量:1
  • 2Gudmundson P. The dynamic behavior of slender structures with cross-sectional cracks [ J ]. Journal of Mechanics Physics Solids, 1983, 31 (4) : 329-345. 被引量:1
  • 3Shen M-H H, Chu Y C. Vibrations of beams with a fatigue crack [ J]. Computers and Structures, 1992, 45 (1) :79-93. 被引量:1
  • 4Sundermeyer J N, Weaver R L. On crack identification and characterization in a beam by non-linear vibration analysis [J]. Journal of Sound and Vibration, 1995, 183 (5) : 857 -871. 被引量:1
  • 5Ruotolo R, Surace C, Crespo P, et al. Harmonic analysis of the vibrations of a cantilevered beam with a closing crack [ J ]. Computers and Structures, 1996, 61 ( 6 ) : 1057-1074. 被引量:1
  • 6Pugno N, Surace C, Ruotolo R. Evaluation of the non-linear dynamic response to harmonic excitation of a beam with several breathing cracks [ J ]. Journal of Sound and Vibration, 2000, 235 (5) : 749-762. 被引量:1
  • 7Loutridis S, Douka E, Hadjileontiadis L J. Forced vibration behavior and crack detection of cracked beams using instantaneous frequency [J]. NDT & E International 2005, 38(5): 411-419. 被引量:1
  • 8Chati M, Rand R, Mukherjee S. Modal analysis of a cracked beam [ J]. Journal of Sound and Vibration, 1997, 207 ( 2 ) : 249-270. 被引量:1
  • 9Liu T J C. Fracture mechanics and crack contact analyses of the active repair of multi-layered piezoelectric patches bonded on cracked structures [ J]. Theoretical and Applied Fracture mechanics, 2007, 47(2): 120-132. 被引量:1
  • 10Andreaus U, Casini P, Vestroni F. Non-linear dynamics of a cracked cantilever beam under harmonic excitation [ J ]. International Journal of Non-linear Mechanics, 2007, 42 ( 3 ) : 566-575. 被引量:1

共引文献44

同被引文献129

引证文献22

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部