期刊文献+

鸡群优化算法-投影寻踪洪旱灾害评估模型 被引量:52

Projection pursuit model for evaluation of flood and drought disasters based on chicken swarm optimization algorithm
下载PDF
导出
摘要 利用15个复杂函数对鸡群优化算法进行仿真验证,并同狼群算法、粒子群算法、鱼群算法和遗传算法进行对比。利用鸡群优化算法搜寻投影寻踪模型最佳投影方向,建立鸡群优化算法-投影寻踪洪旱灾害评估模型。以文山州1990—2013年洪旱灾害评估为例,分别选取受灾人口等5个洪灾评估指标及农作物受灾面积等4个旱灾评估指标,利用洪旱灾害投影系列均值及标准差构造洪旱灾害评估分级标准对实例进行评估。结果表明:鸡群优化算法具有较好的计算鲁棒性和全局寻优能力。将该算法用于投影寻踪模型最佳投影方向的选取,可有效提高评估精度,避免最佳投影方向寻优结果变化范围过大的缺陷。 The chicken swarm optimization algorithm was validated using 15 complex functions, and the simulated results were compared with those of the Wolf algorithm, particle swarm optimization algorithm, fish swarm algorithm, and genetic algorithm. Using the chicken swarm optimization to search for the optimal projection direction of the projection pursuit model, a projection pursuit evaluation model was established. Using assessment of flood and drought disasters from 1990 to 2013 in Wenshan Prefecture as an example, five flood disaster evaluation indices, including disaster-affected population, and four drought disaster evaluation indices, including the disaster area of crops, were selected, and grading standards for flood and drought disaster assessment were constructed with the mean and standard deviation of the flood and drought disaster projection series. The results show that the chicken swarm optimization algorithm is robust and has high global optimization ability. Using the algorithm to select the optimal projection direction of the projection pursuit model can effectively improve the evaluation accuracy and prevent a high degree of variation from occurring in the optimal projection direction.
作者 崔东文
出处 《水利水电科技进展》 CSCD 北大核心 2016年第2期16-23,41,共9页 Advances in Science and Technology of Water Resources
关键词 洪旱灾害评估 投影寻踪 鸡群优化算法 算法验证 文山州 flood and drought disaster assessment projection pursuit chicken swarm optimization algorithm algorithm verification Wenshan Prefecture
  • 相关文献

参考文献24

二级参考文献204

共引文献618

同被引文献412

引证文献52

二级引证文献219

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部