期刊文献+

基于小波域的fMRI脑功能连通性检测方法

Wavelet Domain-Based Functional Connectivity Detection Method in f MRI
下载PDF
导出
摘要 将小波变换和聚类方法结合,提出了一种基于小波域的f MRI激活区聚类检测方法.该方法首先采用多步决策的思想,对f MRI图像进行模糊C均值聚类,去除f MRI数据的不平衡问题;之后利用平稳小波变换,对数据进行小波分解,提取出感兴趣的频率范围的信息,并在小波域对体素用改进的K均值聚类算法进行分析,从而找出大脑中因任务刺激而激活的区域.对多名被试进行了视觉刺激实验,并与目前主流的SPM方法进行了比较,结果表明本文方法较SPM方法具有更高的合理性,对大脑功能连通性检测具有指导意义和实用价值. In this paper, wavelet transform and clustering method are combined in order to detect the task stimulation-caused activation areas of a human brain in f MRI. According to the idea of multi-step decision, firstly, we perform fuzzy-c-means clustering in the f MRI image to solve the ill-balanced problem of the data. Secondly, we use the stationary wavelet transform to decompose the data, and extract those data of interested frequency, and then the improved k-means clustering algorithm is proposed to analyze these data in the wavelet domain. The experimental results with several subjects show that the visual stimulation-caused activation areas of human brain can be detected. Compared with the popular SPM method, the proposed method in this paper is more reasonable, and has directive significance and practical value on the functional connectivity detection of human brains.
出处 《计算机系统应用》 2016年第1期214-218,共5页 Computer Systems & Applications
基金 国家自然科学基金(31170952 31470954) 上海科委项目(14590501700)
关键词 小波变换 聚类 不平衡问题 功能连通性检测 功能磁共振成像 wavelet transform clustering Ill-balanced problem functional connectivity detection functional magnetic resonance imaging
  • 相关文献

参考文献13

  • 1Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl Acad Sci USA, 1990, 87(24):9868-72. 被引量:1
  • 2黄继英,梁星原编著..磁共振成像原理[M].西安:陕西科学技术出版社,1998:212.
  • 3Friston KJ, Holmes AP, Worsley KJ. Statistical parametric maps in functional imaging:a general linear approach. Human Brain Mapping, 1994, 2(4):189-210. 被引量:1
  • 4McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, Bell AJ, Sejnowski TJ. Analysis of fMRI data by blind separation into spatial independent component analysis. Human Brain Mapping, 1998, 6(3):160-188. 被引量:1
  • 5Zhang J, Tuo X, Yuan Z, Liao W, Chen H. Analysis of fMRI data using an integrated principal component analysis and supervised affinity propagation clustering approach. IEEE Trans. on Biomedical Engineering, 2011, 58(11):3184-3196. 被引量:1
  • 6Meyerbase A, Saalbach A, Lange O, Wismuller A. Unsupervised clustering of fMRI and MRI time series. Biomedical Signal Processing and Control, 2007, 2(4):295-310. 被引量:1
  • 7谢小平等.fMRI脑功能成像信号的聚类分析.2007全国复杂系统研究论坛.北京:中国高等科学技术中心,2005. 被引量:1
  • 8任宁宁,普杰信,刘森.基于小波变换和空间相关性fMRI数据[J].微电子学与计算机,2008,25(12):64-66. 被引量:2
  • 9Geert Verdoolaege, Yves Rosseel. Activation detection in event-related fMRI through clustering of wavelet distribution. Proc. of 2010 IEEE 17th International Conference on Image Processing. Hong Kong. IEEE. 2010. 4393-4396. 被引量:1
  • 10支联合,谭素敏,支羽光.基于快速平稳小波变换的特征提取方法分析fMRI数据[J].中国生物医学工程学报,2012,31(4):620-624. 被引量:2

二级参考文献30

  • 1张敬敏,张志佳,王东署.基于小波分解的塔式快速图像匹配算法[J].微电子学与计算机,2007,24(1):207-209. 被引量:9
  • 2SaUe F D, Formisano E, Linden D E J, et al. Exploring brain function with magnetic resonance imaging [J ]. European Journal of Radiology, 1999, 30(2):84- 94. 被引量:1
  • 3Ruttimann U E, Unser M, Rawlings R R, et al. Statistical analysis of functional MRI data in the wavelet domain [J]. IEEE Trans Med Imaging, 1998, 17(2) :142 - 154. 被引量:1
  • 4Bullmore E, Fadili J, Maxim V, et al. Wavelets and functional magnetic resonance imaging of the human brain [J]. NeuroImage, 2004, 23 (1) : 234 - 249. 被引量:1
  • 5Desco M, Hemandez J A, Santos A, et al. Multiresolution analysis in fMRI : sensitivity and specificity in the detection of brain activation[J]. Human Brain Mapping, 2001, 14 (1):16-27. 被引量:1
  • 6Genovse C R. Statistical inference in functional magnetic resonance[R]. Technical Reaport 674, Pittsburgh, USA, Deparement of Statistics, Carnegic Mellon University, 1997. 被引量:1
  • 7RAMAKBISHN B,WANG Jing.Spectral/spatial hyperspectral image compression inconjunction with virtual dimensionality[M] //SHEN S S,LEWIS P E.Algorithms and technologies for multispectral,hyperspectral,and ultraspectral imagery XI.Orlando,FL:Proc of SPIE,2005:772-781. 被引量:1
  • 8CHANG C I,DU Qian.Estimation of number of spectrally distinct signal sources in hyperspectral imagery[J].IEEE Trans on Geoscience and Remote Sensing,2004,42(3):608-619. 被引量:1
  • 9BEN H,CHANG C I.Automatic spectral target recognition in hyperspectral imagery[J].IEEE Trans on Aerospace and Electronic Systems,2003,39 (4):1232-1246. 被引量:1
  • 10HARSANYI J C,CHANG C I.Hyperspectral image classification and dimensionality reduction:an orthogonal suhspace projection[J].IEEE Trans on Geoscience and Remote Sensing,1994,32(4):779-785. 被引量:1

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部