期刊文献+

基于气象因素和时间序列分析的配电网故障数量预测 被引量:14

Distribution Network Faults Prediction Based on Meteorological Factors and Time Series Analysis
下载PDF
导出
摘要 基于华东某市配电网故障报修数据,开展配电网故障数量短期预测研究。提出基于气温的季节判定方法,综合采用多元回归和时间序列分析手段,构建分季节的气象影响故障量预测模型,确定温度、天气等气象因素与故障量的量化关系,并针对剔除气象因素影响的剩余故障量,构建自回归移动平均时间序列预测模型,捕捉故障量的时间序列变化趋势。通过上述模型的综合应用,实现了配电网故障数量较高精度的短期预测。 Based on the failure data from a distribution network in east China, the paper proposes an air temperature based season judgment method. Through multiple regression and time series analysis, the paper establishes the forecasting model for distribution network faults in different seasons considering meteorological factors such as temperature and weather, and determines a quantitative relationship between the meteorological factors and the faults. For the failures which are not explained by the meteorological factors, the paper builds autoregressive integrated moving average(ARIMA) time series model for further prediction, in order to get the high short-period prediction precision of the distribution network failures by the comprehensive application of the regression model and time series model.
出处 《陕西电力》 2016年第1期68-72,共5页 Shanxi Electric Power
关键词 配电网 故障 预测 线性回归 时间序列 ARIMA dislribulion network fault predietion multiple regression time series ARIMA
  • 相关文献

参考文献6

二级参考文献39

共引文献115

同被引文献173

引证文献14

二级引证文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部