期刊文献+

基于随机森林的地理要素面向对象自动解译方法 被引量:30

An Object-based Automatic Interpretation Method for Geographic Features Based on Random Forest Machine Learning
原文传递
导出
摘要 面向地理对象影像分析(GEOBIA)技术取得了显著的进展,代表了遥感影像解译的发展范式,其主要目标是发展智能化分析方法。随机森林机器学习方法是一种相对新的、数据驱动的非参数分类方法,具有自动特征优选、自动模型构建等优势,为智能化分析提供了有效手段。充分利用GEOBIA及随机森林机器学习的优势,提出了基于随机森林的地理要素面向对象自动解译方法,阐述了随机森林面向对象分类方法的技术流程,为设计和实现该方法提供了详细指导,有助于指导用户优选特征和构建分类模型。通过与支持向量机分类的对比实验证明,该方法可以自动进行特征优选及分类模型的构建,利用较少的特征得到较高的分类精度,在不损失性能的前提下减少了计算量和内存使用,能够为大范围、大区域地理要素自动解译提供先验知识及自动化的手段。 Geographic object-based image analysis(GEOBIA)techniques have recently seen considerable development in comparison to traditional pixel-based image analysis,representing aparadigm shift in remote sensing interpretation.The main aim is to incorporate and develop geographic-based intelligence.The random forest(RF)machine learning method is a relatively new,non-parametric,datadriven classification method that can supply intelligent means for feature selection and classification modelling.This paper presents a novel RF GEOBIA method for land-cover classification that makes full use of the advantages of GEOBIA and RF.A detailed RF GEOBIA workflow is proposed to guide the design and implementation of the method,and to guide experts during elaboration of feature selection and classification modelling.Theoretical and experimental results are compared with the support vector machine(SVM)approach,demonstrating that it is a robust and intelligent method for landcover classification with wrapper feature selection and classification modelling.The RF GEOBIA method reduces the number of features required,computing time,and memory requirements,with no associated reduction in performance.It also provides a priori knowledge for further classification and supports large scale applications where"big data"is involved.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2016年第2期228-234,共7页 Geomatics and Information Science of Wuhan University
基金 国家科技支撑计划(2012BAH28B03) 地理空间信息工程国家测绘地理信息局重点实验室开放基金(201101)~~
关键词 面向地理对象影像分析 随机森林 分类模型 特征选择 geographic object-based image analysis(GEOBIA) random forest classification model feature selection
  • 相关文献

参考文献21

  • 1Wiki. GEO-Object~Based Image Analysis[OL]. ht-tp;//wiki. ucalgary. ca/page/GEOBIA,2015. 被引量:1
  • 2Hay G J, Castilla G. Object-based Image Analysis:Strengths, Weaknesses,Opportunities and Threats(SWOT) [C]. The 1st International Conference onObject-based Image Analysis (OBIA),Salzburg,Austria,2006. 被引量:1
  • 3Robertson L D,King D J. Comparison of Pixel-andObject-based Classification in Land-cover ChangeMapping [J]. International Journal of RemoteSensing,2011,32(6),1 505-1 529. 被引量:1
  • 4Li Haitao, Gu Haiyan,Han Yanshun, et al. Ob-ject-oriented Classification of High-resolution Re-mote Sensing Imagery Based on an Improved ColourStructure Code and a Support Vector Machine [J].International Journal of Remote Sensing , 2010, 31(6):1 453-1 470. 被引量:1
  • 5Blaschke T. Object Based Image Analysis for Re-mote Sensing[J]. ISPRS Journal of Photogram-metry and Remote Sensing , 2010, 65:2-16. 被引量:1
  • 6Definiens Imaging GmbH. Developer 8 ReferenceBook; Definiens Imaging GmbH [ OL], http://www. doc88. com/p-0963997861736. html. 被引量:1
  • 7Baraldi A,Boschetti L. Operational Automatic Re-mote Sensing Image Understanding Systems: Be-yond Geographic Object-based and Object-orientedImage Analysis (GEOBIA/GEOOIA). Part 1: In-troduction[J]. Remote Sensing ,2012 ,4 :2 694-2 735. 被引量:1
  • 8Baraldi A,Boschetti L. Operational Automatic Re-mote Sensing Image Understanding Systems: Be-yond Geographic Object-based and Object-orientedImage Analysis (GEOBIA/GEOOIA). Part 2 : No-vel System Architecture, Information/KnowledgeRepresentation, Algorithm Design and Implementa-tion[J]. Remote Sensing ,2012.4:2 768-2 817. 被引量:1
  • 9Stumpf A, Kerle N. Object-oriented Mapping ofLandslides Using Random Forests [ J ]. RemoteSensing of Environment,2011,115 ( 10 ): 2 564-2577. 被引量:1
  • 10Breiman L, Cutler A. Random Forests [OL]. ht-tp ://www. stat. berkeley. edu/users/breiman/Ran-domForests/cc_home. htm,2015. 被引量:1

二级参考文献17

  • 1易玲,汪潇,刘斌.HJ-1卫星数据质量及其在土地利用中的应用研究[J].国土资源与遥感,2009,81(3). 被引量:1
  • 2Sandau R, Klaus B, Marco D E. Small satellites for glob- al coverage: Potential and limits [ J ]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65 (6). 被引量:1
  • 3Guelman M, Ortenberg F. Small satellite' s role in future hyperspectral Earth observation missions [ J ]. Acta Astro- nautica, 2009, 64 (11): 1252-1263. 被引量:1
  • 4Nikunj C O, Kagan T. Classifier ensembles: Select real- world applications [ J ]. Information Fusion, 2008, 9 ( 1 ) 0. 被引量:1
  • 5I_ Giacinto G, Fabio R. An approach to the automatic de- sign of multiple classifier systems[ J]. Pattern Recognition Letters, 2001,22 (1) : 25-33. 被引量:1
  • 6Breiman L. Random Forests [ J ]. Machine Learning, 2001,45 (1) : 5-32. 被引量:1
  • 7Rodriguez V F, Abarca F, Ghimire B. Incorporating Spa- tial Variability Measures in Land-cover Classification u- sing Random Forest [ J ]. Procedia Environmental Sci- ences, 2011, (3) : 44-49. 被引量:1
  • 8Pall O G, Jon A B, Johannes R S. Random Forests for land cover classification [ J ]. Pattern Recognition Letters, 2006, 27 (4): 294-300. 被引量:1
  • 9Verikas A I Gelzin A, Bacauskiene M. Mining data with random forests : A survey and results of new tests [ J ]. Pat- tern Recognition, 2011,44 (2): 330-349. 被引量:1
  • 10Yu X W, Hyyppa J, Vastaranta M, Holopainen M. Pre- dicting individual tree attributes from airborne laser point clouds based on the random forests technique [ J ]. Journal of Photogrammetry and Remote Sensing, 2011, 1 (66). 被引量:1

共引文献76

同被引文献328

引证文献30

二级引证文献310

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部