期刊文献+

流域最佳管理措施情景优化算法的并行化 被引量:4

Parallelization of an Optimization Algorithm for Beneficial Watershed Management Practices
原文传递
导出
摘要 流域最佳管理措施(beneficial management practices,BMPs)情景优化问题是一个典型的复杂地理计算问题,目前所常用的BMPs情景优化算法需要结合流域模型进行大量的迭代运算,因而花费大量计算时间,难以满足实际应用的要求。本文针对目前代表性的BMPs情景优化算法——ε支配多目标遗传算法(ε-NSGA-II),采用主从式并行策略,利用MPI并行编程库实现了该优化算法的并行化。在江西省赣江上游的梅川江流域(面积为6 366km2)进行BMPs情景优化的应用案例表明,并行化的优化算法当运行于集群机时,加速比随着核数(8~512核)的增加而递增,当核数为512时,加速比达到最大值(310);并行效率随着核数的增加逐渐下降,最高值0.91,最低值0.61,取得了明显的加速效果。 The optimization of beneficial management practices(or beneficial management practices,BMPs)is a typical case of complex geo-computation;a computation-intensive search for optimal solutions of watershed BMPs through many iterative watershed model simulations.This paper presents a parallelization of the epsilon non-dominated sorted genetic algorithm(ε-NSGA-II),an increasingly widely-used algorithm for BMPs optimization.The proposed parallel optimization algorithm was designed based on a master-slave parallelization strategy and implemented using the message passing interface(MPI).A case study executed on an IBM cluster for the Meichuan Jiang watershed(about6366km2)in the Lake Poyang basin shows that the proposed parallel BMPs optimization algorithm performs well.When the count of cores used in the case study increased(8~512cores),the proposed parallel optimization algorithm delivered a higher speedup ratio.The speedup ratio reached 310when512 cores were used.In this case study,the parallel efficiency of the proposed parallel BMPs optimization algorithm decreased with an increase of the count of cores.The parallel efficiency ranged from 0.61 to 0.91,demonstrating that the proposed algorithm achieves good parallel performance.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2016年第2期202-207,共6页 Geomatics and Information Science of Wuhan University
基金 国家863计划(2011AA120305) 国家科技支撑计划(2013BAC08B03-4) 国家水专项计划(2013ZX07103006-005)~~
关键词 最佳管理措施 优化算法 并行计算 流域模型 MPI 集群 beneficial management practices(BMPs) optimization algorithm parallel computation watershed model MPI cluster
  • 相关文献

参考文献15

  • 1Logan T J. Agricultural Best Management Practicesfor Water-Pollution Control-Current issues[J]. Ag-riculture Ecosystems & Environment, 1993, 46(1-4) : 223-321. 被引量:1
  • 2Ripa M, Leone A,Gamier M,et al. AgriculturalLand Use and Best Management Practices to Con-trol nonpoint Water Pollution [ J]. EnvironmentalManagement, 2006,38(2) : 253-266. 被引量:1
  • 3Rao N S, Easton Z M, Schneiderman E M, et al.Modeling Watershed-scale Effectiveness of Agricul-tural Best Management Practices to Reduce Phos-phorus Loading [ J ]. Journal of EnvironmentalManagement, 2009,90(3) : 1 385-1 395. 被引量:1
  • 4Arabi M,Govindaraju R S,Hantush M M. Cost-effective Allocation of Watershed Management Prac-tices Using a Genetic Algorithm [J]. Water Re-sources Research , 2006,42(10) : W10429-1-14. 被引量:1
  • 5Gitau M W,Chiang L C,Sayeed M, et al. Water-shed Modeling Using Large-Scale Distributed Com-puting in Condor and the Soil and Water AssessmentTool model [J]. SIMULATION,2012,88(3):365-380. 被引量:1
  • 6Rouholahnejad E, Abbaspour K C,Vejdani M, etal. A Parallelization Framework for Calibration ofHydrological Models[J]. Environmental Modelling&- Software , 2012,31(5) : 28-36. 被引量:1
  • 7李坚,李德仁,邵振峰.一种并行计算的流数据Delaunay构网算法[J].武汉大学学报(信息科学版),2013,38(7):794-798. 被引量:12
  • 8祁昆仑,陈玉敏,吴华意,龚健雅.MPI+OpenMP环境下的特征函数空间滤值并行化方法研究[J].武汉大学学报(信息科学版),2013,38(6):742-745. 被引量:3
  • 9Maringanti C,Chaubey I. High Performance Com-puting Application to Address Non-point SourcePollution at a Watershed Level[C]. American Soci-ety of Agricultural and Biological Engineers AnnualInternational Meeting. Reno, NV,2009. 被引量:1
  • 10Kollat J B, Reed P M. The Value of Online Adap-tive Search: A Performance Comparison of NS-GAII,e-NSGAII and eMOEA[C], Third Interna-tional Conference, EMO 2005, Guanajuato,Mexico, 2005. 被引量:1

二级参考文献20

  • 1郭庆胜,李留所,贾玉明,孙艳.顾及空间自相关的统计数据分级质量评价[J].武汉大学学报(信息科学版),2006,31(3):240-243. 被引量:9
  • 2谭仁春,杜清运,杨品福,张珊珊.地形建模中不规则三角网构建的优化算法研究[J].武汉大学学报(信息科学版),2006,31(5):436-439. 被引量:17
  • 3芮一康,王结臣.Delaunay三角形构网的分治扫描线算法[J].测绘学报,2007,36(3):358-362. 被引量:25
  • 4Mattson T G,Sanders B A.Massingill B L.并行编程模式[M].敖富江,译.北京:清华大学出版社,2005-11. 被引量:2
  • 5Griffith D A. A Linear Regression Solution to the Spatial Autocorrelation Problem [J]Journal of Ge- ographical Systems, 2000, 2 : 141-156. 被引量:1
  • 6Getis. Screening for Spatial Dependence in Regres- sion Analysis [J]Papers of the Regional Science Association, 1990, 69(1): 69-81. 被引量:1
  • 7Legendre P, Dale M R T, Fortin M, et al. The Consequences of Spatial Structure for the Design and Analysis of Eeologieal Field Surveys[J]. Ecog- raphy, 2002, 25:601-615. 被引量:1
  • 8Draya S, Legendrea P, Peres-Netoa P R. Spatial Modeling: a Comprehensive Framework for Princi- pal Coordinate Analysis of Neighbor Matrices (PC- NM) [J]Ecological Modelling, 2006, 196: 483- 493. 被引量:1
  • 9Bivand R S, Pebesma E J, G0mez-Rubio V. Ap- plied Spatial Data Analysis with [M]New York: Springer, 2008, 273-309. 被引量:1
  • 10沈体雁,冯等田,孙铁山.空间计量经济学[M]京:北京大学出版社,2010:26-29. 被引量:1

共引文献13

同被引文献58

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部