期刊文献+

Ni-Cu-Mo/Al_2O_3催化剂用于CH_4/CO_2重整的研究 被引量:5

Reforming of CH_4 with CO_2 over Ni-Cu-Mo/Al_2O_3 catalyst
下载PDF
导出
摘要 甲烷和二氧化碳重整制合成气是有效利用二氧化碳资源的重要途径,对于环境保护和综合利用资源具有重大意义。文章采用浸渍法制备一系列不同镍钼质量比的Ni-Cu-Mo/Al_2O_3催化剂,通过固定床反应器考察不同Ni/Mo质量比和反应温度对催化剂性能的影响,并采用XRD,BET,SEM,CO_2-TPD技术对催化剂进行了表征。结果表明:催化剂的最佳反应温度是800℃,Ni/Mo质量比为0.75的催化剂表现出最好的催化活性。在800℃,空速182 m L/(g·min)的反应条件下,CH_4、CO_2的转化率分别为97.7%,99.1%,CO,H2的选择性分别达到94.4%,92.1%。 CH4-CO2 reforming for syngas production is a promising way for effective use of CO2, which is challenging from both economic and environmental points. The aim is to investigate the effect of Ni-Cu-Mo/Al2O3 catalysts with different Ni/Mo mass ratio on the CO2 reforming of CH4 reaction. The evaluation of the catalytic performances of the composite catalysts was conducted in a fixed-bed reactor at atmospheric pressure. The influencing factors, including temperature, Ni/Mo mass ratio were investigated. The characteristics of the catalysts were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis, scanning electron microscope (SEM) and temperature-programmed desorpti'on of CO2 (CO2-TPD). The results indicate that the catalysts with Ni/Mo mass ratio of 0.75 exhibit better activity at the optimum temperature of 800℃. At the reaction conditions of 800℃ and a space velocity of 182 mL/( g·min) , the conversion rates of CH4 and CO2are 97.7% and 99.1% , respectively, and the selectivity of CO and H2 are 94.4% and 92.1% , respectively.
出处 《化学工程》 CAS CSCD 北大核心 2016年第1期53-57,共5页 Chemical Engineering(China)
基金 山东省优秀中青年科学家科研奖励基金项目(BS2011NJ006)
关键词 甲烷 二氧化碳 催化重整 Ni/Mo质量比 CH4 CO2 catalytic reforming Ni/Mo mass ratio
  • 相关文献

参考文献16

  • 1程金民,黄伟,左志军.碳化终温对碳化钼的制备及甲烷二氧化碳重整催化性能的影响[J].高等学校化学学报,2010,31(1):130-134. 被引量:12
  • 2胡苊.甲烷二氧化碳重整镍基催化剂的制备与研究[D].北京:北京交通大学,2013. 被引量:1
  • 3陈利利,张守臣,张嘉伟,郑华阳,陈蓉,王羽宁.甲烷二氧化碳重整镍基催化剂的研究[J].工业催化,2014,22(3):225-228. 被引量:5
  • 4GAUR S, PAKHARE D, WU H Y, et al. CO2 reforming of CH4 over m-substituted pyrochlore catalysts: effects of temperature and reactant feed ratio [ J ]. Energy & Fuels, 2012,26 (4) : 1989-1998. 被引量:1
  • 5BHAVANIA G, KIM W Y, LEE J S. Barium substituted lanthanum manganite perovskite for CO2 reforming of methane [J]. American Chemical Society Catal,2013,3 (7) :1537-1544. 被引量:1
  • 6XU L,DUAN L E,TANG M C,et al. Catalytic CO2 reforming of CH4 over Cr-promoted Ni/char for H2 production [ J].International Journal of Hydrogen Energy, 2014,39 (19) : 1014-1053. 被引量:1
  • 7NAEEM M A,AL-FATESH A S,ABASAEED A E, et al. Activities of Ni-based nano catalysts for CO2-CHareforming prepared by polyol process [ J ]. Fuel " Processing Technology, 2014,122 : 141-152. 被引量:1
  • 8SHI C, ZHANG S Z, LI X S, et al. Synergism in NiMoO2 precursors essential for CH4/CO2 dry reforming [ J ]. Catalysis Today ,2014,233 ( 15 ) : 1-7. 被引量:1
  • 9SUKONKET T, KHAN A, SAHA B, et al. Influence of the catalyst preparation method, surfactant amount, and steam on CO: reforming of CH4 over 5Ni/Ce0.6 Zr0.4 O2 catalysts [ J ]. Energy & Fuels ,2011,25 (3) :864-877. 被引量:1
  • 10RAHEMIN, HAGHIGHI M, BABALUO A A, et al. Synthesis and physicochemical characterizations of Nil A1203-ZrO2 nanocatalyst prepared via impregnation method and treated with non-thermal plasma for CO2 reforming of CH4 [ J ]. Journal of Industrial and Engineering Chemistry ,2013,19 ( 5 ) : 1566-1576. 被引量:1

二级参考文献68

共引文献52

同被引文献60

  • 1Gray H B. Powering the planet with solar fuel[J]. Nature Chemistry, 2009,1 (7) : 7. 被引量:1
  • 2Tour J M,Kittrell C,Colvin V L. Green carbon as a bridge to renewable energy[J]. Nature Materials, 2010,9 ( 3 ) : 871-874. 被引量:1
  • 3Galvez M Elena, Hischier Illias,Stamatiou Anastasia, et al. CO2 splitting via two-step solar thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions II : kinetic analysis[J]. Energy & Fuels, 2009,23(6) : 2832-2839. 被引量:1
  • 4Xia X H,Jia Z H,Yu Y,et al. Preparation of multi-walled car- bon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O[J]. Carbon, 2007,45 (4) : 717-721. 被引量:1
  • 5Hirata Y, Ando M, Matsunaga N, et al. Electrochemical decom- position of CO2 and CO gases using porous yttria-stabilized zir- conia cell[J]. Ceramics International, 2012,38 (8) : 6377-6387. 被引量:1
  • 6Chu S Z,Wada K,Inoue S,et al. Synthesis and characterization of titania nanostructures on glassby Al anodization and sol gel process[J]. Chemical Materials, 2002,14 (1) : 266-272. 被引量:1
  • 7Kobayashi S, Hanabusa K, Hamasaki N, et al. Preparation of TiO2 hollow-fibers usingsupramolecular assemblies[J]. Chemi- cal Materials, 2000,12(6) : 1523-1525. 被引量:1
  • 8Cai Q,Paulose M,Varghese O K,et al. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation[J]. Mater Res, 2005,20: 230-235. 被引量:1
  • 9Zhang Q H, Han W D, Hong Y J, et al. Photoeatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst[J]. Catalysis To day, 2009,148(3) : 335-340. 被引量:1
  • 10Li Qiuye, Zong Lanlan, Li Chen, Photocatalytic reduction of CO2 to methane on Pt/TiO2 nanosheet porous film[J]. Ad- vances in Condensed Matter Physics,2014,4(1-4) :1-6. 被引量:1

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部