期刊文献+

三种力学模型对低轨卫星轨道拟合的影响分析 被引量:1

Influence of Three Kinds of Dynamical Models on LEOS Orbit Fitting
下载PDF
导出
摘要 针对低轨卫星的轨道拟合问题,分析了传统大气阻力模型、经验力模型和伪随机脉冲模型的基本特性。以GFZ提供的GRACE—A卫星精密星历作为基本观测量,分别采用上述三个力学模型进行了轨道动力学拟合实验。实验结果表明:采用伪随机脉冲模型得到的轨道精度最高,R、T、N三个方向RMS不超过0.002m;其次是经验力模型,RMS不超过0.004m;大气阻力模型精度最差,R和T方向RMS分别不超过0.02m和0.03m,N方向则基本不超过0.06m。 The basic property of the traditional atmospheric drag force model, empirical model and pseudo stochastic pulse model are analyzed in this paper to resolve the problem of LEOS orbit fitting. The precise ephemeris of GRACE - A provided by GFZ is used as basic measurement to verify the performance of these three model. The result shows that the orbit precision using the pseudo stochastic pulse model is the best, and the RMS in R, T and N direction is less than 0.002m. The second best result comes from the empirical model, with the RMS less than 0.004m. For the atmospheric drag force model, the RMS is less than 0.02m,0.03m and 0.06m in R,T and S direction respectively.
出处 《测绘科学与工程》 2015年第6期8-12,16,共6页 Geomatics Science and Engineering
基金 国家自然科学基金资助项目(41104047,41174026).
关键词 伪随机脉冲 经验力模型 轨道拟合 pseudo stochastic pulse empirical model orbit fitting
  • 相关文献

参考文献20

  • 1张精明,闫建强,王福民.EGM2008地球重力场模型精度分析与评价[J].石油地球物理勘探,2010,45(A01):230-233. 被引量:26
  • 2PAVLIS N K, HOLMES S A, KENYON S C, et al. The development and evaluation of the Earth Gravitational Model 2008 ( EGM2008 ) [ J ]. Journal of Geophysical Research, 2012, 117(B4) :78 -82. 被引量:1
  • 3SHAKO R, F RSTE C, ABR1KOSOV O, et al. E1GEN -6C: A High -Resolution Global Gravity Combination Model Including GOCE Data [ M 1- Springer Berlin Hei- delberg, 2014. 被引量:1
  • 4SCHMIDT R, FLECHTNER F, MEYER U, et al. Static and Time - Variable Gravity from GRACE Mission Data [ M ]. Springer Berlin Heidelberg, 2006. 被引量:1
  • 5SCHMIDT R, FLECHTNER F, K NIG R, et al. GRACE Time- Variable Gravity Accuracy Assessment [ M ]. Springer Berlin Heidelberg, 2007. 被引量:1
  • 6REIGBER C, BALMINO G, SCHWINTZER P, et al. Global Gravity Field Recovery Using Solely GPS Tracking and Aecelerometer Data from Champ [ J]. Space Science Reviews, 2003, 108 (1/2) : 55 - 66. 被引量:1
  • 7PRANGE L, J GGI A, BEUTLER G, et al. Gravity Field Determination at the AIUB - The Celestial Mechanics Approach [ M ]. Springer Berlin Heidelberg, 2009. 被引量:1
  • 8J GGI A, BEUTLER G, MEYER U, et al. AIUB - GRACE02S : Status of GRACE Gravity Field Recovery U- sing the Celestial Mechanics Approach [ M ]. Springer Berlin Heidelberg, 2012. 被引量:1
  • 9J GGI A, BEUTLER G, MERVART L. GRACE Gravity Field Determination Using the Celestial Mechanics Ap- proach - First Results [ M ]. Springer Berlin Heidel- berg, 2010. 被引量:1
  • 10MCLAUGHLIN C A, MANEE S, LICHTENBERG T. Drag Coefficient Estimation in Orbit Determination [ J ]. The Journal of the Astronautical Sciences, 2013, 58 (3) : 513 -530. 被引量:1

二级参考文献4

共引文献126

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部