期刊文献+

非线性时变结构随机地震响应最优多项式控制 被引量:2

Optimal polynomial control for random seismic response of non-linear time-varying structures
下载PDF
导出
摘要 以随机地震动作用下具有Bouc-Wen滞回特性的非线性结构系统为受控对象,开展了最优多项式控制算法研究:包括系统矩阵中Maclaurin展开取初始零值衍生的具有时不变增益矩阵的控制律,和系统矩阵中Maclaurin一阶展开衍生的具有时变增益矩阵的控制律。研究表明,受控结构层间位移响应的变异性明显降低,结构的安全性显著提高。同时,基于时不变增益矩阵的控制律的控制效果在一定程度上受制于控制力施加的大小与系统稳定性之间的平衡关系,而考虑了每一个时间步位移和速度对增益矩阵影响、基于时变增益矩阵的控制律则能以较小的控制出力获得较好的控制效果。 The physically-motivated stochastic optimal control is proved to be efficient in performance improvement and risk mitigation of engineering structures. Here, the polynomial control method considering time-variant gain parameters for physical scheme ruling nonlinear stochastic systems was presented. The exceedance probability of structural states and control force served as the critical argument of probabilistic criterion, whereby the parameter optimization of control policy could be readily achieved. A randomly base-excited shear frame structure with Bouc-Wen behaviors was used as the object for control test. Numerical results indicated that using the proposed stochastic optimal control schemes, the variation of inter-storey drift of the structure decreases significantly, and the structural safety is enhanced obviously; the benefit of optimal polynomial control with time-invariant gain parameters is enslaved to the balance relation between system stability and control force, while the optimal polynomial control with time-variant gain parameters involves the contributions of structural velocity and displacement to the gain matrix at each time step, it results in a better structural performance with a smaller control force.
作者 彭勇波 李杰
出处 《振动与冲击》 EI CSCD 北大核心 2016年第1期210-215,共6页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(51108344) 土木工程防灾国家重点实验室探索性研究课题资助项目(SLDRCE14-B-20)
关键词 多项式控制 增益矩阵 超越概率 非线性结构 时变 polynomial control gain matrix exceedance probability nonlinear structures time-variant
  • 相关文献

参考文献12

  • 1Yang JN, Li Z, Vongchavalitkul S. Stochastic hybrid control of hysteretic structures [J]. Probabilistic Engineering Mechanics, 1994, 9(1-2): 125-133. 被引量:1
  • 2Zhu WQ, Ying ZG, Ni YQ, Ko JM. Optimal Nonlinear stochastic control of hysteretic systems [J]. ASCE Journal of Engineering Mechanics, 2000, 126(10): 1027-1032. 被引量:1
  • 3Yang JN. Application of optimal control theory to civil engineering structures [J]. ASCE Journal of the Engineering Mechanics Division, 1975, 101(EM6): 819-838. 被引量:1
  • 4Li J, Peng YB, Chen JB. A physical approach to structural stochastic optimal controls [J]. Probabilistic Engineering Mechanics, 2010, 25(1): 127-141. 被引量:1
  • 5Li J, Peng YB, Chen JB. Nonlinear stochastic optimal control strategy of hysteretic structures [J]. Structural Engineering & Mechanics, 2011, 38(1): 39-63. 被引量:1
  • 6Yong JM, Zhou XY. Stochastic Controls: Hamiltonian Systems and HJB Equations [M]. Springer, New York, 1999. 被引量:1
  • 7Li J, Peng YB, Chen JB. Probabilistic criteria of structural stochastic optimal controls [J]. Probabilistic Engineering Mechanics, 2011, 26(2): 240-253. 被引量:1
  • 8Li J, Chen, J.B. Stochastic Dynamics of Structures [M]. John Wiley & Sons, Singapore, 2009. 被引量:1
  • 9Foliente GC. Hysteresis modeling of wood joints and structural systems [J]. Journal of Structural Engineering, 1995, 121(6): 1013-1022. 被引量:1
  • 10Zhang WS, Xu YL. Closed form solution for along wind response of actively controlled tall buildings with LQG controllers [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89: 785–807. 被引量:1

二级参考文献2

共引文献55

同被引文献11

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部