期刊文献+

基于独立成分分析的偏振遥感图像大气校正 被引量:1

Atmospheric Correction of Polarization Remote Sensing Image by Independent Component Analysis
原文传递
导出
摘要 针对不存在天空区域的偏振遥感图像,提出基于独立成分分析的大气校正算法。根据大气光和场景光高频信息的独立性,由独立成分分析和互信息最优化原则估算大气偏振度,再结合源图像中的先验知识和大气散射物理模型估算无穷远处大气光强。通过实验对比分析,得到的大气信息结果与理论值相匹配,验证了大气信息估算的合理性。同时,为抑制大气介质造成的遥感图像退化影响,提出基于模糊规则修正线偏振度,校正大气光信息A,改善了图像质量。校正后的偏振遥感图像更准确地反映了地物目标特征,提高了目标探测和识别能力。 when the sky is not in the field of view, the atmospheric correction algorithm based on independent component analysis is proposed. According to the independence of the high frequency information of the atmosphere and scene light, the polarization degree of atmosphere is estimated by independent component analysis and mutual information optimization principle, and the airlight intensity at infinity is estimated with prior knowledge of the source image and atmospheric scattering physical model. Through experimental contrast analysis, the obtained atmospheric information results match the theoretical value, and the reasonability of atmospheric information estimation is verified. Meanwhile, for the influence of sensing image degradation caused by atmospheric medium, the linear polarization degree is fixed based on fuzzy rule, the airlight information is corrected, and the image quality is improved. The polarization remote sensing image reflects the terrain target characteristics more accurately after correction, and the ability of target detection and recognition is improved.
出处 《激光与光电子学进展》 CSCD 北大核心 2016年第1期92-100,共9页 Laser & Optoelectronics Progress
基金 广西自然科学基金(2012GXNSFBA053170) 广西教育厅重点项目(ZD2014053) 广西自动检测技术与仪器重点实验室基金(YQ14108 YQ15111)
关键词 图像处理 偏振图像 图像复原 物理模型 散射 image processing polarimetric image image reconstruction physical model scattering
  • 相关文献

参考文献3

二级参考文献29

  • 1潘泉,赵永强,张洪才.基于像素层图像融合的偏振图像计算方法研究[J].仪器仪表学报,2004,25(z1):703-705. 被引量:7
  • 2王炳健,刘上乾,周慧鑫,李庆.基于平台直方图的红外图像自适应增强算法[J].光子学报,2005,34(2):299-301. 被引量:100
  • 3王新,王学勤,孙金祚.基于偏振成像和图像融合的目标识别技术[J].激光与红外,2007,37(7):676-678. 被引量:17
  • 4S Mohan, M Ravishankar. Modified Contrast l,imited A.daptie ltistngram Equalization Based on Coutrasl Enhancement for Mammogram Images[M]. Berlin: Springer, 2013. 397-403. 被引量:1
  • 5J Zhao, Y Chen, H Feng, et al.. Fast imagnhancmenl usitlg mulli-scale saliency extraction ill inlrared imagery[J].Optk Internalional Journal for Light and Eleclron Optits Oplics, 2014. 被引量:1
  • 6K M He, J Sun, X Tang. Single image haze removal using dark channel prior[J]. Pattern Analysis and Machine Intelligence, IEEE Transaction on, 2011, 33(12): 2341-2353. 被引量:1
  • 7J P Tarel, N Hautiere. Fast visibility restoration from a single color or gray level image[C]. Proceedings of IEEE, International Conference on Computer Vision, 2009. 2201-2208. 被引量:1
  • 8K B Gibson, T Q Nguyen. Fast single image fog remove using the adaptive wiener filter[C]. 2013 IEEE International Conferrenee on Image Processing(ICIP), 2013. 714-718. 被引量:1
  • 9i S Parthasarathy, P Sankaran. A Retinex based haze removal method[C]. Industrial and Information Systems, IEEE, 2012. 1-6. 被引量:1
  • 10X Dong, G Wang, Y Pang, et al.. Fast efficient algorithm for enhancement of low lighting video[C]. Multimedia and Expo (ICME), 2011 IEEE International Conference on, 2011. 1-6. 被引量:1

共引文献49

同被引文献18

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部