期刊文献+

茶叶理条工艺的人工神经网络优化 被引量:4

Optimization on tea carding technology by artificial neural network
下载PDF
导出
摘要 以六安绿茶为原料,研究理条温度、理条时间和投叶量对理条工艺的影响。在单因素试验的基础上,采用正交试验对理条工艺条件进行选择优化,得出最佳工艺组合为:理条温度90℃,理条时间5min,投叶量1.0kg;再对正交试验的结果进行多元一次回归和多元二次回归,建立人工神经网络模型。人工神经网络程序优化结果为:理条温度93℃,理条时间5min,投叶量1.0kg,优于正交试验的最佳工艺组合。 The influences were studied, from tea carding temperature, tea carding time and the amount of leaves on the processing, taking Lu'an green tea as material. Based on the single factor experiment, the optimum parameters were selected. The optimum parameters were as followed; carding temperature 90 ℃, carding time 5 rain, and the amount of leaves 1.0 kg. Experimental data were subjected to multivariate first-order regression and multivariate quadratic regression, and two regressing equations were obtained. A neural net work model based on the orthogonal experiment data was established to obtain the optimum parameters, final result for temperature at 93 ℃, tea carding time is 5 minutes, the amount of leaves is 1.0 kg, and the experimental result based on the parameters from the artificial neural network is better than that based on orthogonal experiment.
出处 《食品与机械》 CSCD 北大核心 2016年第1期103-105,153,共4页 Food and Machinery
基金 农业部茶叶机械产业体系项目(编号:11008702)
关键词 茶叶 理条 人工神经网络 tea carding artificial neural network
  • 相关文献

参考文献12

二级参考文献64

共引文献64

同被引文献61

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部