期刊文献+

非线性抛物型偏差分系统迭代学习控制 被引量:10

Iterative learning control of nonlinear parabolic partial difference systems
下载PDF
导出
摘要 本文研究了一类时空离散的非线性抛物型偏差分系统的迭代学习控制问题.首先,针对系统含有不确定系数与非线性特点,设计了开环P型迭代学习控制算法;然后,建立了输出跟踪误差沿迭代轴收敛的充分条件,并利用离散Gronwall不等式、λ范数以及压缩映射原理,详细给出了收敛性分析证明.最后通过仿真实例说明了算法的有效性. The iterative learning control (ILC) technique is applied to a class of spatial-temporal discrete nonlinear parabolic partial difference systems. For the discussion purpose, an open-loop P-type iterative learning algorithm is de- signed for the systems containing uncertain coefficients and nonlinear terms. Then, the sufficient condition of the tracking error to converge is established, and the convergence analysis is discussed using discrete Gronwall inequality, A-norm and the contraction mapping principle. Furthermore, a simulation example is given to illustrate the effectiveness of the proposed algorithm.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2015年第12期1607-1612,共6页 Control Theory & Applications
基金 国家自然科学基金项目(61364006 61374104) 广西优秀中青年骨干教师培养工程 广西高等学校科研一般项目(2013YB175)资助~~
关键词 迭代学习控制 收敛性分析 偏差分系统 非线性 iterative learning control convergence analysis partial difference systems nonlinear
  • 相关文献

参考文献24

  • 1BERTRMA E S, LEO O C. Resistive grid image filtering: input/out- put analysis via the CNN Framework [J]. IEEE Transactions on Cir- cuits and Systems-I: Fundamental Theory and Applications, 1999, 39(7): 531 - 548. 被引量:1
  • 2李向平.分子轨道的偏差分方程法[J].化学学报,1982,40(8):688—698. 被引量:1
  • 3LI Xiangping. Molecular orbital method of partial difference equa- tion [J]. Acta Chimica Sinica, 1982, 40(8): 688 - 698. 被引量:1
  • 4COURANT R, FRIEDRICHS K, LEWY H. On partial difference e- quations of mathematical physics [J]. IBM Journal of Research and Development. 1967, 11(2): 215- 234. 被引量:1
  • 5MORTON K W, MAYERS D F. Numerical Solution of Partial Differ- ential Equations: An Introduction [M]. London: Cambridge Univer- sity Press, 2005. 被引量:1
  • 6LIU S T, CHENG S S. Existence of positive solution for partial differ- ence a equations [J]. Far East Journal Mathematical Science, 1997, 5(3): 387 - 392. 被引量:1
  • 7CHENG S S. Partial Difference Equations, Vol. 3 of Advances in Dis- crete Mathematics and Applications [M]. New York: Taylor & Fran- cis, 2003. 被引量:1
  • 8XIE S L, CHENG S S. Stability creteria for parabolic type partial d- ifference equations [J]. Jouranl of Computational and Applied Math- ematics, 1996, 75(1): 57 - 66. 被引量:1
  • 9WONG P J Y, AGARWAL R E Oscillation criteria for nonlinear par- tial difference equations with delays [J]. Computer Mathematics with Applications, 1996, 32(6): 57 - 86. 被引量:1
  • 10ZHANG B G, LIU S T, CHENG S S. Oscillation of class of delay partial difference equations [J]. Journal of Difference Equations and Applications, 1995, 1(3): 215- 226. 被引量:1

二级参考文献8

共引文献27

同被引文献63

  • 1皮道映,孙优贤.离散非线性系统开闭环P型迭代学习控制律及其收敛性[J].控制理论与应用,1997,14(2):157-161. 被引量:16
  • 2REN W, BEARD R W. Distributed Consensus in Multi-Vehicle CooperativeControl: Theory and Applications [M]. London: Springer-Verlag, 2008. 被引量:1
  • 3VICSEK T, CZIRK A, BEN-JACOB E, et al. Novel type of phasetransition in a system of self-driven particles [J]. Physical Review Letters,1995, 75(6): 1226 – 1229. 被引量:1
  • 4JADBABAIE A, LIN J, MORSE A S. Coordination of groups of mobileautonomous agents using nearest neighbor rules [J]. IEEE Transactionson Automatic Control, 2003, 48(6): 988 – 1001. 被引量:1
  • 5FAX J A, MURRAY R M. Information flow and cooperative controlof vehicle formations [J]. IEEE Transactions on Automatic Control,2004, 49(9): 1465 – 1476. 被引量:1
  • 6OLFATI-SABER R, MURRAY M. Consensus problems in networksof agents with switching topology and time-delays [J]. IEEE Transactionson Automatic Control, 2004, 49(9): 1520 – 1533. 被引量:1
  • 7SLOTINE J J E,WANGW. A study of synchronization and group cooperationusing partial contraction theory [M] //Cooperative Control.Berlin: Springer, 2005, 309: 443 – 443. 被引量:1
  • 8QU Z H. Cooperative Control of Dynamical Systems [M]. London:Springer-Verlag, 2009. 被引量:1
  • 9KHOO S Y, XIE L H, MAN Z H. Robust finite-time consensus trackingalgorithm for multirobot systems [J]. IEEE/ASME Transactionson Mechatronics, 2009, 14(2): 219 – 228. 被引量:1
  • 10WEN G H, DUAN Z S, YU W W, et al. Consensus of secondordermulti-agent systems with delayed nonlinear dynamics and intermittentcommunications [J]. International Journal of Control, 2013,86(2): 322 – 331. 被引量:1

引证文献10

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部