期刊文献+

基于K-L特征压缩的云计算冗余数据降维算法 被引量:8

A Data Reduction Algorithm Based on K-L Feature Compression for Cloud Computing
下载PDF
导出
摘要 提出一种基于K-L(Karhunen-Loeve Transform)特征压缩的云计算冗余数据降维算法.在冗余数据的重构相空间中进行高维特征提取,采用K-L特征压缩方法降低云计算冗余数据的维数,设计改进的FIR滤波算法实现冗余数据滤除.仿真结果表明,采用该算法能有效实现对云计算冗余数据的特征空间降维和滤除处理,提高云计算读写速度,降低计算开销. A K-L (Karhunen-Loeve Transform) based algorithm for reducing the dimension of redundant data in the cloud computing is proposed. High dimensional feature extraction is performed in the reconstructed phase space of redundant data, and K-L feature compression method is adopted to reduce the dimension of redundant data in the cloud computing, and the improved FIR filtering algorithm is designed to realize the redundancy data filtering. Simulation results show that the proposed algorithm can effectively achieve the feature space dimension reduction of the redundant data in the cloud computing, and can improve the speed of cloud computing, and reduce the computational cost.
作者 聂军
出处 《微电子学与计算机》 CSCD 北大核心 2016年第2期125-129,共5页 Microelectronics & Computer
基金 广东省高等学校教学质量与教学改革工程项目(粤教高函〔2013〕6号)"广东科技学院计算机系软件工程专业综合改革" 东莞市2015年社会科学课题(2015JYZ40) 广东科技学院重点项目课题(GKY-2014KYZD-5)
关键词 云计算 特征压缩 冗余数据 降维 cloud computing feature compression redundancy data dimension reduction
  • 相关文献

参考文献8

二级参考文献157

  • 1董欢庆,李战怀,林伟.RAID-VCR:一种能够承受三个磁盘故障的RAID结构[J].计算机学报,2006,29(5):792-800. 被引量:10
  • 2Bhagwat D,Pollack K,Long DDE,Schwarz T,Miller EL,P-ris JF.Providing high reliability in a minimum redundancy archival storage system.In:Proc.of the 14th Int'l Symp.on Modeling,Analysis,and Simulation of Computer and Telecommunication Systems (MASCOTS 2006).Washington:IEEE Computer Society Press,2006.413-421. 被引量:1
  • 3Zhu B,Li K.Avoiding the disk bottleneck in the data domain deduplication file system.In:Proc.of the 6th Usenix Conf.on File and Storage Technologies (FAST 2008).Berkeley:USENIX Association,2008.269-282. 被引量:1
  • 4Bhagwat D,Eshghi K,Mehra P.Content-Based document routing and index partitioning for scalable similarity-based searches in a large corpus.In:Berkhin P,Caruana R,Wu XD,Gaffney S,eds.Proc.of the 13th ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data Mining (KDD 2007).New York:ACM Press,2007.105-112. 被引量:1
  • 5You LL,Pollack KT,Long DDE.Deep store:An archival storage system architecture.In:Proc.of the 21st Int'l Conf.on Data Engineering (ICDE 2005).Washington:IEEE Computer Society Press,2005.804-815. 被引量:1
  • 6Quinlan S,Dorward S.Venti:A new approach to archival storage.In:Proc.of the 1st Usenix Conf.on File and Storage Technologies (FAST 2002).Berkeley:USENIX Association,2002.89-102. 被引量:1
  • 7Sapuntzakis CP,Chandra R,Pfaff B,Chow J,Lam MS,Rosenblum M.Optimizing the migration of virtual computers.In:Proc.of the 5th Symp.on Operating Systems Design and Implementation (OSDI 2002).New York:ACM Press,2002.377-390. 被引量:1
  • 8Rabin MO.Fingerprinting by random polynomials.Technical Report,CRCT TR-15-81,Harvard University,1981. 被引量:1
  • 9Rivest R.The MD5 message-digest algorithm.1992.http://www.python.org/doc/current/lib/module-md5.html. 被引量:1
  • 10U.S.National Institute of Standards and Technology (NIST).Federal Information Processing Standards (FIPS) Publication 180-1:Secure Hash Standard.1995.http://www.itl.nist.gov/fipspubs/fip180-1.htm. 被引量:1

共引文献177

同被引文献69

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部