摘要
针对一类具有未知控制系数的随机系统,该控制系数依赖于时间、状态和未知参数,在更一般的非线性增长条件下,利用积分反推法和参数分离技术,设计了稳定的自适应状态反馈控制器,研究了该系统的自适应状态反馈镇定问题。利用随机分析工具,可以证明由所研究的系统、状态反馈控制器、未知参数估计器所构成的整个闭环系统的平衡点是依概率全局稳定的,系统的所有状态可以几乎处处调节为零。最后,数值仿真验证了自适应状态反馈控制器的有效性。
For a class of stochastic systems with unknown control coefficients which depends on the time, states and unknown parameters, under more general nonlinear growth conditions, by using the integral backstepping design method and parameter separation technique, the stable adaptive state-feedback controller is designed and the problem of adaptive state-feedback stabilization is studied. By using stochastic analysis tools, the equilibrium of the closed-loop system composed of investigated systems, the state-feedback controller and estimators of unknown parameters, can be proved to be globally stable in probability and all of the system states can be regulated to the origin almost rarely. Finally, the efficiency of the state-feedback controller is demonstrated by a simulation example.
出处
《控制工程》
CSCD
北大核心
2016年第1期109-112,共4页
Control Engineering of China
基金
鲁东大学校基金(LY2012014)
关键词
随机
自适应状态反馈镇定
增长条件
Stochastic
adaptive state-feedback stabilization
growth condition